Skip to content
Related Articles

Related Articles

Total number of Spanning trees in a Cycle Graph
  • Difficulty Level : Basic
  • Last Updated : 14 Apr, 2021
GeeksforGeeks - Summer Carnival Banner

Given the number of vertices in a Cycle graph. The task is to find the Total number of Spanning trees possible. 
Note: A cycle/circular graph is a graph that contains only one cycle. A spanning tree is a shortest/minimum path in a graph that covers all the vertices of a graph.

Examples:  

Input: Vertices = 3
Output: Total Spanning tree = 3

Input: Vertices = 4
Output: Total Spanning tree = 4

Example 1: 
For Cycle Graph with vertices = 3 
 

Spanning Tree possible is 3 
 



Example 2: 
For Cycle Graph with vertices = 4 
 

Spanning Tree possible is 4 
 

So, the number of spanning treess will always be equal to the number of vertices in a cycle graph.

Below is the required implementation: 

C++




// C++ program to find number of
// spanning trees
#include <bits/stdc++.h>
using namespace std;
 
// function that calculates the
// total Spanning tree
int Spanning(int vertices)
{
    result = 0;
 
    result = vertices;
    return result;
}
 
// Driver code
int main()
{
    int vertices = 4;
 
    cout << "Spanning tree = " << Spanning(vertices);
    return 0;
}

Java




// Java program to find number of
// spanning trees
 
import java.io.*;
 
class GFG {
 
// function that calculates the
// total Spanning tree
static int Spanning(int vertices)
{
    int result = 0;
 
    result = vertices;
    return result;
}
 
// Driver code
    public static void main (String[] args) {
    int vertices = 4;
 
    System.out.println("Spanning tree = " + Spanning(vertices));
    }
}
// This code is contributed 
// by chandan_jnu..

Python3




# Python program to find number of
# spanning trees
 
# function that calculates the
# total Spanning tree
def Spanning( vertices):
        result = 0
 
    result = vertices
    return result
 
# Driver code
vertices = 4
print("Spanning tree = ",
       Spanning(vertices))
 
# This code is contributed
# by Sanjit_Prasad

C#




// C# program to find number
// of spanning trees
using System;
 
// function that calculates
// the total Spanning tree
class GFG
{
public int Spanning(int vertices)
{
    int result = 0;
 
    result = vertices;
    return result;
}
 
// Driver code
public static void Main()
{
    GFG g = new GFG();
    int vertices = 4;
 
    Console.WriteLine("Spanning tree = {0}",  
                      g.Spanning(vertices));
}
}
 
// This code is contributed
// by Soumik

PHP




<?php
// PHP program to find number of
// spanning trees
 
// function that calculates the
// total Spanning tree
function Spanning($vertices)
{
    $result = 0;
 
    $result = $vertices;
    return $result;
}
 
// Driver code
$vertices = 4;
 
echo "Spanning tree = " .
     Spanning($vertices);
      
// This code is contributed
// by Ankita Saini
?>

Javascript




<script>
 
// Javascript program to find number of
// spanning trees
 
// Function that calculates the
// total Spanning tree
function Spanning(vertices)
{
    result = 0;
    result = vertices;
    return result;
}
 
// Driver code
var vertices = 4;
document.write("Spanning tree = " +
               Spanning(vertices));
 
// This code is contributed by noob2000
 
</script>
Output: 
Spanning tree = 4

 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up
Recommended Articles
Page :