Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Total number of Spanning trees in a Cycle Graph

  • Difficulty Level : Basic
  • Last Updated : 14 Apr, 2021

Given the number of vertices in a Cycle graph. The task is to find the Total number of Spanning trees possible. 
Note: A cycle/circular graph is a graph that contains only one cycle. A spanning tree is a shortest/minimum path in a graph that covers all the vertices of a graph.

Examples:  

Attention reader! All those who say programming isn't for kids, just haven't met the right mentors yet. Join the  Demo Class for First Step to Coding Coursespecifically designed for students of class 8 to 12. 

The students will get to learn more about the world of programming in these free classes which will definitely help them in making a wise career choice in the future.

Input: Vertices = 3
Output: Total Spanning tree = 3

Input: Vertices = 4
Output: Total Spanning tree = 4

Example 1: 
For Cycle Graph with vertices = 3 
 



Spanning Tree possible is 3 
 

Example 2: 
For Cycle Graph with vertices = 4 
 

Spanning Tree possible is 4 
 

So, the number of spanning treess will always be equal to the number of vertices in a cycle graph.

Below is the required implementation: 

C++




// C++ program to find number of
// spanning trees
#include <bits/stdc++.h>
using namespace std;
 
// function that calculates the
// total Spanning tree
int Spanning(int vertices)
{
    result = 0;
 
    result = vertices;
    return result;
}
 
// Driver code
int main()
{
    int vertices = 4;
 
    cout << "Spanning tree = " << Spanning(vertices);
    return 0;
}

Java




// Java program to find number of
// spanning trees
 
import java.io.*;
 
class GFG {
 
// function that calculates the
// total Spanning tree
static int Spanning(int vertices)
{
    int result = 0;
 
    result = vertices;
    return result;
}
 
// Driver code
    public static void main (String[] args) {
    int vertices = 4;
 
    System.out.println("Spanning tree = " + Spanning(vertices));
    }
}
// This code is contributed 
// by chandan_jnu..

Python3




# Python program to find number of
# spanning trees
 
# function that calculates the
# total Spanning tree
def Spanning( vertices):
        result = 0
 
    result = vertices
    return result
 
# Driver code
vertices = 4
print("Spanning tree = ",
       Spanning(vertices))
 
# This code is contributed
# by Sanjit_Prasad

C#




// C# program to find number
// of spanning trees
using System;
 
// function that calculates
// the total Spanning tree
class GFG
{
public int Spanning(int vertices)
{
    int result = 0;
 
    result = vertices;
    return result;
}
 
// Driver code
public static void Main()
{
    GFG g = new GFG();
    int vertices = 4;
 
    Console.WriteLine("Spanning tree = {0}",  
                      g.Spanning(vertices));
}
}
 
// This code is contributed
// by Soumik

PHP




<?php
// PHP program to find number of
// spanning trees
 
// function that calculates the
// total Spanning tree
function Spanning($vertices)
{
    $result = 0;
 
    $result = $vertices;
    return $result;
}
 
// Driver code
$vertices = 4;
 
echo "Spanning tree = " .
     Spanning($vertices);
      
// This code is contributed
// by Ankita Saini
?>

Javascript




<script>
 
// Javascript program to find number of
// spanning trees
 
// Function that calculates the
// total Spanning tree
function Spanning(vertices)
{
    result = 0;
    result = vertices;
    return result;
}
 
// Driver code
var vertices = 4;
document.write("Spanning tree = " +
               Spanning(vertices));
 
// This code is contributed by noob2000
 
</script>
Output: 
Spanning tree = 4

 




My Personal Notes arrow_drop_up

Start Your Coding Journey Now!