Total number of different staircase that can made from N boxes

Given N boxes each of unit dimension i.e. (1×1 meter^2). The task is to find the total number of different staircases that can be made from those boxes with the following rules:

  • Staircase must be in strictly descending order.
  • Each staircase contains at least two steps. (Total steps is equal to the breadth of the staircase.)

Examples:

Input : N = 5
Output : 2
The two staircase are following :



Input : N = 6
Output : 3
The three staircase are following :

If we consider total steps = 2, we can observe the fact that the number of staircase is incremented by 1 if N is incremented by 2. We can illustrate the above thing from the following image :

Now, if total steps is greater than 2 (assume, total steps = K) then we can take this thing as first create a base (base requires boxes equal to the total steps) for staircase and put another staircase on it of steps size K and K – 1 having boxes N – K. (because K boxes already used to create base). Thus, we can solve this problem using bottom-up dynamic programming.

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to find the total number of
// different staircase that can made
// from N boxes
#include <iostream>
using namespace std;
  
// Function to find the total number of
// different staircase that can made
// from N boxes
int countStaircases(int N)
{
    // DP table, there are two states.
    // First describes the number of boxes
    // and second describes the step
    int memo[N + 5][N + 5];
  
    // Initilize all the elements of
    // the table to zero
    for (int i = 0; i <= N; i++) {
        for (int j = 0; j <= N; j++) {
            memo[i][j] = 0;
        }
    }
  
    // Base case
    memo[3][2] = memo[4][2] = 1;
  
    for (int i = 5; i <= N; i++) {
        for (int j = 2; j <= i; j++) {
  
            // When step is equal to 2
            if (j == 2) {
                memo[i][j] = memo[i - j][j] + 1;
            }
  
            // When step is greater than 2
            else {
                memo[i][j] = memo[i - j][j] + 
                             memo[i - j][j - 1];
            }
        }
    }
  
    // Count the total staircase
    // from all the steps
    int answer = 0;
    for (int i = 1; i <= N; i++) 
        answer = answer + memo[N][i];    
  
    return answer;
}
  
// Driver Code
int main()
{
    int N = 7;
  
    cout << countStaircases(N);
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to find the total number of
// different staircase that can made
// from N boxes
  
import java.util.*;
  
class GFG
{
        // Function to find the total number of
        // different staircase that can made
        // from N boxes
        static int countStaircases(int N)
        {
            // DP table, there are two states.
            // First describes the number of boxes
            // and second describes the step
            int [][] memo=new int[N + 5][N + 5];
          
            // Initilize all the elements of
            // the table to zero
            for (int i = 0; i <= N; i++) {
                for (int j = 0; j <= N; j++) {
                    memo[i][j] = 0;
                }
            }
          
            // Base case
            memo[3][2] = memo[4][2] = 1;
          
            for (int i = 5; i <= N; i++) {
                for (int j = 2; j <= i; j++) {
          
                    // When step is equal to 2
                    if (j == 2) {
                        memo[i][j] = memo[i - j][j] + 1;
                    }
          
                    // When step is greater than 2
                    else {
                        memo[i][j] = memo[i - j][j] + 
                                    memo[i - j][j - 1];
                    }
                }
            }
          
            // Count the total staircase
            // from all the steps
            int answer = 0;
            for (int i = 1; i <= N; i++) 
                answer = answer + memo[N][i]; 
          
            return answer;
        }
          
        // Driver Code
        public static void main(String [] args)
        {
            int N = 7;
          
            System.out.println(countStaircases(N));
          
              
        }
  
}
  
// This code is contributed 
// by ihritik

chevron_right


Python 3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python 3 program to find the total 
# number of different staircase that 
# can made from N boxes
  
# Function to find the total number 
# of different staircase that can 
# made from N boxes
def countStaircases(N):
  
    # DP table, there are two states.
    # First describes the number of boxes
    # and second describes the step
    memo = [[0 for x in range(N + 5)]
               for y in range(N + 5)]
  
    # Initilize all the elements of
    # the table to zero
    for i in range(N + 1):
        for j in range (N + 1):
            memo[i][j] = 0
          
    # Base case
    memo[3][2] = memo[4][2] = 1
  
    for i in range (5, N + 1) :
        for j in range (2, i + 1) :
  
            # When step is equal to 2
            if (j == 2) :
                memo[i][j] = memo[i - j][j] + 1
              
            # When step is greater than 2
            else :
                memo[i][j] = (memo[i - j][j] + 
                              memo[i - j][j - 1])
      
    # Count the total staircase
    # from all the steps
    answer = 0
    for i in range (1, N + 1):
        answer = answer + memo[N][i] 
  
    return answer
  
# Driver Code
if __name__ == "__main__":
  
    N = 7
  
    print (countStaircases(N))
  
# This code is contributed
# by ChitraNayal

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to find the total number 
// of different staircase that can made
// from N boxes
using System;
  
class GFG
{
      
// Function to find the total number 
// of different staircase that can 
// made from N boxes
static int countStaircases(int N)
{
    // DP table, there are two states.
    // First describes the number of boxes
    // and second describes the step
    int [,] memo = new int[N + 5, N + 5];
  
    // Initilize all the elements 
    // of the table to zero
    for (int i = 0; i <= N; i++) 
    {
        for (int j = 0; j <= N; j++)
        {
            memo[i, j] = 0;
        }
    }
  
    // Base case
    memo[3, 2] = memo[4, 2] = 1;
  
    for (int i = 5; i <= N; i++)
    {
        for (int j = 2; j <= i; j++) 
        {
  
            // When step is equal to 2
            if (j == 2) 
            {
                memo[i, j] = memo[i - j, j] + 1;
            }
  
            // When step is greater than 2
            else 
            {
                memo[i, j] = memo[i - j, j] + 
                             memo[i - j, j - 1];
            }
        }
    }
  
    // Count the total staircase
    // from all the steps
    int answer = 0;
    for (int i = 1; i <= N; i++) 
        answer = answer + memo[N, i]; 
  
    return answer;
}
  
// Driver Code
public static void Main()
{
    int N = 7;
  
    Console.WriteLine(countStaircases(N));
}
}
  
// This code is contributed 
// by Subhadeep

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP program to find the total 
// number of different staircase
// that can made from N boxes
  
// Function to find the total 
// number of different staircase 
// that can made from N boxes
function countStaircases($N)
{
      
    // Initilize all the elements 
    // of the table to zero
    for ($i = 0; $i <= $N; $i++)
    {
        for ($j = 0; $j <= $N; $j++) 
        {
            $memo[$i][$j] = 0;
        }
    }
  
    // Base case
    $memo[3][2] = $memo[4][2] = 1;
  
    for ($i = 5; $i <= $N; $i++) 
    {
        for ($j = 2; $j <= $i; $j++) 
        {
  
            // When step is equal to 2
            if ($j == 2) 
            {
                $memo[$i][$j] = $memo[$i - $j][$j] + 1;
            }
  
            // When step is greater than 2
            else 
            {
                $memo[$i][$j] = $memo[$i - $j][$j] + 
                                $memo[$i - $j][$j - 1];
            }
        }
    }
  
    // Count the total staircase
    // from all the steps
    $answer = 0;
    for ($i = 1; $i <= $N; $i++) 
        $answer = $answer + $memo[$N][$i]; 
  
    return $answer;
}
  
// Driver Code
$N = 7;
  
echo countStaircases($N);
  
// This code is contributed
// by Shivi_Aggarwal
?>

chevron_right


Output:

4

Time Complexity: O(n^2).




My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.