Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Total distinct pairs from two arrays such that second number can be obtained by inverting bits of first

  • Last Updated : 12 May, 2021

Given two arrays arr1[] and arr2[], the task is to take an element from first array (say a) and one element from second array (say b). If the number formed by inverting the bits of a is equal to b, then the pair (a, b) is a valid pair. 
Inversion Of bits example: 
11 is written as 1011 in binary. After inverting it’s bits, 0100 is obtained which is 4 in decimal. Hence (11, 4) is a valid pair but (4, 11) is not as 11 cannot be obtained after inverting the digits of 4 i.e. 100 -> 011 which is 3.
Examples: 
 

Input: arr1[] = {11, 5, 4}, arr2[] = {1, 4, 3, 11} 
Output:
(11, 4) and (4, 3) are the only valid pairs.
Input: arr1[] = {43, 7, 1, 99}, arr2 = {5, 1, 28, 20} 
Output:
 

 

Approach: 
 

  • Take two empty sets s1 and s2.
  • Insert all the elements of the arr2[] in s2.
  • Iterate the first array. If the element is not present in the first set and the number formed by inverting it’s bits is present in the second set then increment the count and insert the current element in s1 so that it doesn’t get counted again.
  • Print the value of count in the end.

Below is the implementation of the above approach:
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the number formed
// by inverting bits the bits of num
int invertBits(int num)
{
    // Number of bits in num
    int x = log2(num) + 1;
 
    // Inverting the bits one by one
    for (int i = 0; i < x; i++)
        num = (num ^ (1 << i));
 
    return num;
}
 
// Function to return the total valid pairs
int totalPairs(int arr1[], int arr2[], int n, int m)
{
 
    // Set to store the elements of the arrays
    unordered_set<int> s1, s2;
 
    // Insert all the elements of arr2[] in the set
    for (int i = 0; i < m; i++)
        s2.insert(arr2[i]);
 
    // Initialize count variable to 0
    int count = 0;
    for (int i = 0; i < n; i++) {
 
        // Check if element of the first array
        // is not in the first set
        if (s1.find(arr1[i]) == s1.end()) {
 
            // Check if the element formed by inverting bits
            // is in the second set
            if (s2.find(invertBits(arr1[i])) != s2.end()) {
 
                // Increment the count of valid pairs and insert
                // the element in the first set so that
                // it doesn't get counted again
                count++;
                s1.insert(arr1[i]);
            }
        }
    }
 
    // Return the total number of pairs
    return count;
}
 
// Driver code
int main()
{
    int arr1[] = { 43, 7, 1, 99 };
    int arr2[] = { 5, 1, 28, 20 };
    int n = sizeof(arr1) / sizeof(arr1[0]);
    int m = sizeof(arr2) / sizeof(arr2[0]);
 
    cout << totalPairs(arr1, arr2, n, m);
 
    return 0;
}

Java




// Java implementation of the approach
import java.util.*;
import java.io.*;
import java.lang.*;
 
class GFG
{
 
static int log2(int N)
{
    // calculate log2 N indirectly
    // using log() method
    int result = (int)(Math.log(N) / Math.log(2));
 
    return result;
}
 
// Function to return the number formed
// by inverting bits the bits of num
static int invertBits(int num)
{
    // Number of bits in num
    int x = log2(num) + 1;
 
    // Inverting the bits one by one
    for (int i = 0; i < x; i++)
        num = (num ^ (1 << i));
 
    return num;
}
 
// Function to return the total valid pairs
static int totalPairs(int arr1[], int arr2[], int n, int m)
{
 
    // Set to store the elements of the arrays
    HashSet<Integer> s1 = new HashSet<Integer>();
    HashSet<Integer> s2 = new HashSet<Integer>();
 
    // add all the elements of arr2[] in the set
    for (int i = 0; i < m; i++)
        s2.add(arr2[i]);
 
    // Initialize count variable to 0
    int count = 0;
    for (int i = 0; i < n; i++)
    {
 
        // Check if element of the first array
        // is not in the first set
        if (!s1.contains(arr1[i]))
        {
 
            // Check if the element formed by inverting bits
            // is in the second set
            if (s2.contains(invertBits(arr1[i])))
            {
 
                // Increment the count of valid pairs and add
                // the element in the first set so that
                // it doesn't get counted again
                count++;
                s1.add(arr1[i]);
            }
        }
    }
 
    // Return the total number of pairs
    return count;
}
 
// Driver code
public static void main(String[] args)
{
    int arr1[] = { 43, 7, 1, 99 };
    int arr2[] = { 5, 1, 28, 20 };
    int n = arr1.length;
    int m = arr2.length;
 
    System.out.println(totalPairs(arr1, arr2, n, m));
}
}
 
// This code is contributed by SHUBHAMSINGH10

Python3




# Python3 implementation of the approach
from math import log2;
 
# Function to return the number formed
# by inverting bits the bits of num
def invertBits(num) :
     
    # Number of bits in num
    x = log2(num) + 1;
 
    # Inverting the bits one by one
    for i in range(int(x)) :
        num = (num ^ (1 << i));
 
    return num;
 
# Function to return the total valid pairs
def totalPairs(arr1, arr2, n, m) :
 
    # Set to store the elements of the arrays
    s1, s2 = set(), set();
     
    # Insert all the elements of
    # arr2[] in the set
    for i in range(m) :
        s2.add(arr2[i]);
         
    # Initialize count variable to 0
    count = 0;
    for i in range(n) :
         
        # Check if element of the first array
        # is not in the first set
        if arr1[i] not in s1 :
             
            # Check if the element formed by
            # inverting bits is in the second set
            if invertBits(arr1[i]) in s2 :
                 
                # Increment the count of valid pairs
                # and insert the element in the first
                # set so that it doesn't get counted again
                count += 1;
                s1.add(arr1[i]);
     
    # Return the total number of pairs
    return count;
 
# Driver code
if __name__ == "__main__" :
 
    arr1 = [ 43, 7, 1, 99 ];
    arr2 = [ 5, 1, 28, 20 ];
    n = len(arr1);
    m = len(arr2);
 
    print(totalPairs(arr1, arr2, n, m));
 
# This code is contributed by Ryuga

C#




// C# implementation of the approach
using System;
using System.Collections.Generic;
 
class GFG
{
  
static int log2(int N)
{
    // calculate log2 N indirectly
    // using log() method
    int result = (int)(Math.Log(N) / Math.Log(2));
  
    return result;
}
  
// Function to return the number formed
// by inverting bits the bits of num
static int invertBits(int num)
{
    // Number of bits in num
    int x = log2(num) + 1;
  
    // Inverting the bits one by one
    for (int i = 0; i < x; i++)
        num = (num ^ (1 << i));
  
    return num;
}
  
// Function to return the total valid pairs
static int totalPairs(int []arr1, int []arr2, int n, int m)
{
  
    // Set to store the elements of the arrays
    HashSet<int> s1 = new HashSet<int>();
    HashSet<int> s2 = new HashSet<int>();
  
    // add all the elements of arr2[] in the set
    for (int i = 0; i < m; i++)
        s2.Add(arr2[i]);
  
    // Initialize count variable to 0
    int count = 0;
    for (int i = 0; i < n; i++)
    {
  
        // Check if element of the first array
        // is not in the first set
        if (!s1.Contains(arr1[i]))
        {
  
            // Check if the element formed by inverting bits
            // is in the second set
            if (s2.Contains(invertBits(arr1[i])))
            {
  
                // Increment the count of valid pairs and add
                // the element in the first set so that
                // it doesn't get counted again
                count++;
                s1.Add(arr1[i]);
            }
        }
    }
  
    // Return the total number of pairs
    return count;
}
  
// Driver code
public static void Main()
{
    int []arr1 = { 43, 7, 1, 99 };
    int []arr2 = { 5, 1, 28, 20 };
    int n = arr1.Length;
    int m = arr2.Length;
  
    Console.Write(totalPairs(arr1, arr2, n, m));
}
}
  
// This code is contribute by chitranayal

Javascript




<script>
 
// Javascript implementation of the approach
 
// Function to return the number formed
// by inverting bits the bits of num
function invertBits(num)
{
    // Number of bits in num
    var x = parseInt(Math.log2(num)) + 1;
 
    // Inverting the bits one by one
    for (var i = 0; i < x; i++)
        num = (num ^ (1 << i));
 
    return num;
}
 
// Function to return the total valid pairs
function totalPairs(arr1, arr2, n, m)
{
 
    // Set to store the elements of the arrays
    var s1 = new Set();
    var s2 = new Set();
 
    // add all the elements of arr2[] in the set
    for (var i = 0; i < m; i++)
        s2.add(arr2[i]);
 
    // Initialize count variable to 0
    var count = 0;
    for (var i = 0; i < n; i++) {
 
        // Check if element of the first array
        // is not in the first set
        if (!s1.has(arr1[i]))
        {
            // Check if the element formed by inverting bits
            // is in the second set
            if (s2.has(invertBits(arr1[i]))) {
 
                // Increment the count of valid pairs and add
                // the element in the first set so that
                // it doesn't get counted again
                count++;
                s1.add(arr1[i]);
            }
        }
    }
 
    // Return the total number of pairs
    return count;
}
 
// Driver code
var arr1 = [43, 7, 1, 99];
var arr2 = [5, 1, 28, 20];
var n = arr1.length;
var m = arr2.length;
document.write( totalPairs(arr1, arr2, n, m));
 
 
</script>
Output: 
2

 


My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!