Skip to content
Related Articles

Related Articles

Titanic Survival Prediction using Tensorflow in Python

View Discussion
Improve Article
Save Article
  • Difficulty Level : Hard
  • Last Updated : 29 Sep, 2022
View Discussion
Improve Article
Save Article

In this article, we will learn to predict the survival chances of the Titanic passengers using the given information about their sex, age, etc. As this is a classification task we will be using random forest.

There will be three main steps in this experiment:

  • Feature Engineering
  • Imputation
  • Training and Prediction


The dataset for this experiment is freely available on the Kaggle website. Download the dataset from this link Once the dataset is downloaded it is divided into three CSV files gender submission.csv train.csv and test.csv

Importing Libraries and Initial setup


import warnings
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns'fivethirtyeight')
%matplotlib inline

Now let’s read the training and test data using the pandas data frame.


train = pd.read_csv('train.csv')
test = pd.read_csv('test.csv')
# To know number of columns and rows
# (891, 12)

To know the information about each column like the data type, etc we use the function.



Now let’s see if there are any NULL values present in the dataset. This can be checked using the isnull() function. It yields the following output.





Now let us visualize the data using some pie charts and histograms to get a proper understanding of the data.

Let us first visualize the number of survivors and death counts.


f, ax = plt.subplots(1, 2, figsize=(12, 4))
    explode=[0, 0.1], autopct='%1.1f%%', ax=ax[0], shadow=False)
ax[0].set_title('Survivors (1) and the dead (0)')
sns.countplot('Survived', data=train, ax=ax[1])
ax[1].set_title('Survivors (1) and the dead (0)')


Sex feature


f, ax = plt.subplots(1, 2, figsize=(12, 4))
train[['Sex', 'Survived']].groupby(['Sex']).mean()[0])
ax[0].set_title('Survivors by sex')
sns.countplot('Sex', hue='Survived', data=train, ax=ax[1])
ax[1].set_title('Survived (1) and deceased (0): men and women')


Feature Engineering

Now let’s see which columns should we drop and/or modify for the model to predict the testing data. The main tasks in this step is to drop unnecessary features and to convert string data into the numerical category for easier training.

We’ll start off by dropping the Cabin feature since not a lot more useful information can be extracted from it. But we will make a new column from the Cabins column to see if there was cabin information allotted or not.


# Create a new column cabinbool indicating
# if the cabin value was given or was NaN
train["CabinBool"] = (train["Cabin"].notnull().astype('int'))
test["CabinBool"] = (test["Cabin"].notnull().astype('int'))
# Delete the column 'Cabin' from test
# and train dataset
train = train.drop(['Cabin'], axis=1)
test = test.drop(['Cabin'], axis=1)

We can also drop the Ticket feature since it’s unlikely to yield any useful information


train = train.drop(['Ticket'], axis=1)
test = test.drop(['Ticket'], axis=1)

There are missing values in the Embarked feature. For that, we will replace the NULL values with ‘S’ as the number of Embarks for ‘S’ are higher than the other two.


# replacing the missing values in
# the Embarked feature with S
train = train.fillna({"Embarked": "S"})

We will now sort the age into groups. We will combine the age groups of the people and categorize them into the same groups. BY doing so we will be having fewer categories and will have a better prediction since it will be a categorical dataset.


# sort the ages into logical categories
train["Age"] = train["Age"].fillna(-0.5)
test["Age"] = test["Age"].fillna(-0.5)
bins = [-1, 0, 5, 12, 18, 24, 35, 60, np.inf]
labels = ['Unknown', 'Baby', 'Child', 'Teenager',
          'Student', 'Young Adult', 'Adult', 'Senior']
train['AgeGroup'] = pd.cut(train["Age"], bins, labels=labels)
test['AgeGroup'] = pd.cut(test["Age"], bins, labels=labels)

In the ‘title’ column for both the test and train set, we will categorize them into an equal number of classes. Then we will assign numerical values to the title for convenience of model training.


# create a combined group of both datasets
combine = [train, test]
# extract a title for each Name in the
# train and test datasets
for dataset in combine:
    dataset['Title'] = dataset.Name.str.extract(' ([A-Za-z]+)\.', expand=False)
pd.crosstab(train['Title'], train['Sex'])
# replace various titles with more common names
for dataset in combine:
    dataset['Title'] = dataset['Title'].replace(['Lady', 'Capt', 'Col',
                                                 'Don', 'Dr', 'Major',
                                                 'Rev', 'Jonkheer', 'Dona'],
    dataset['Title'] = dataset['Title'].replace(
        ['Countess', 'Lady', 'Sir'], 'Royal')
    dataset['Title'] = dataset['Title'].replace('Mlle', 'Miss')
    dataset['Title'] = dataset['Title'].replace('Ms', 'Miss')
    dataset['Title'] = dataset['Title'].replace('Mme', 'Mrs')
train[['Title', 'Survived']].groupby(['Title'], as_index=False).mean()
# map each of the title groups to a numerical value
title_mapping = {"Mr": 1, "Miss": 2, "Mrs": 3,
                 "Master": 4, "Royal": 5, "Rare": 6}
for dataset in combine:
    dataset['Title'] = dataset['Title'].map(title_mapping)
    dataset['Title'] = dataset['Title'].fillna(0)

Now using the title information we can fill in the missing age values.


mr_age = train[train["Title"] == 1]["AgeGroup"].mode()  # Young Adult
miss_age = train[train["Title"] == 2]["AgeGroup"].mode()  # Student
mrs_age = train[train["Title"] == 3]["AgeGroup"].mode()  # Adult
master_age = train[train["Title"] == 4]["AgeGroup"].mode()  # Baby
royal_age = train[train["Title"] == 5]["AgeGroup"].mode()  # Adult
rare_age = train[train["Title"] == 6]["AgeGroup"].mode()  # Adult
age_title_mapping = {1: "Young Adult", 2: "Student",
                     3: "Adult", 4: "Baby", 5: "Adult", 6: "Adult"}
for x in range(len(train["AgeGroup"])):
    if train["AgeGroup"][x] == "Unknown":
        train["AgeGroup"][x] = age_title_mapping[train["Title"][x]]
for x in range(len(test["AgeGroup"])):
    if test["AgeGroup"][x] == "Unknown":
        test["AgeGroup"][x] = age_title_mapping[test["Title"][x]]

Now assign a numerical value to each age category. Once we have mapped the age into different categories we do not need the age feature. Hence drop it


# map each Age value to a numerical value
age_mapping = {'Baby': 1, 'Child': 2, 'Teenager': 3,
               'Student': 4, 'Young Adult': 5, 'Adult': 6,
               'Senior': 7}
train['AgeGroup'] = train['AgeGroup'].map(age_mapping)
test['AgeGroup'] = test['AgeGroup'].map(age_mapping)
# dropping the Age feature for now, might change
train = train.drop(['Age'], axis=1)
test = test.drop(['Age'], axis=1)

Drop the name feature since it contains no more useful information.


train = train.drop(['Name'], axis=1)
test = test.drop(['Name'], axis=1)

Assign numerical values to sex and embarks categories\


sex_mapping = {"male": 0, "female": 1}
train['Sex'] = train['Sex'].map(sex_mapping)
test['Sex'] = test['Sex'].map(sex_mapping)
embarked_mapping = {"S": 1, "C": 2, "Q": 3}
train['Embarked'] = train['Embarked'].map(embarked_mapping)
test['Embarked'] = test['Embarked'].map(embarked_mapping)

Fill in the missing Fare value in the test set based on the mean fare for that P-class


for x in range(len(test["Fare"])):
    if pd.isnull(test["Fare"][x]):
        pclass = test["Pclass"][x]  # Pclass = 3
        test["Fare"][x] = round(
            train[train["Pclass"] == pclass]["Fare"].mean(), 4)
# map Fare values into groups of
# numerical values
train['FareBand'] = pd.qcut(train['Fare'], 4,
                            labels=[1, 2, 3, 4])
test['FareBand'] = pd.qcut(test['Fare'], 4,
                           labels=[1, 2, 3, 4])
# drop Fare values
train = train.drop(['Fare'], axis=1)
test = test.drop(['Fare'], axis=1)

Now we are done with the feature engineering

Model Training

We will be using Random forest as the algorithm of choice to perform model training. Before that, we will split the data in an 80:20 ratio as a train-test split. For that, we will use the train_test_split() from the sklearn library.


from sklearn.model_selection import train_test_split
# Drop the Survived and PassengerId
# column from the trainset
predictors = train.drop(['Survived', 'PassengerId'], axis=1)
target = train["Survived"]
x_train, x_val, y_train, y_val = train_test_split(
    predictors, target, test_size=0.2, random_state=0)

Now import the random forest function from the ensemble module of sklearn and for the training set.


from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score
randomforest = RandomForestClassifier()
# Fit the training data along with its output, y_train)
y_pred = randomforest.predict(x_val)
# Find the accuracy score of the model
acc_randomforest = round(accuracy_score(y_pred, y_val) * 100, 2)

With this, we got an accuracy of 83.25%


We are provided with the testing dataset on which we have to perform the prediction. To predict, we will pass the test dataset into our trained model and save it into a CSV file containing the information, passengerid and survival. PassengerId will be the passengerid of the passengers in the test data and the survival will column will be either 0 or 1.


ids = test['PassengerId']
predictions = randomforest.predict(test.drop('PassengerId', axis=1))
# set the output as a dataframe and convert
# to csv file named resultfile.csv
output = pd.DataFrame({'PassengerId': ids, 'Survived': predictions})
output.to_csv('resultfile.csv', index=False)

This will create a resultfile.csv which looks like this


My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!