Open In App
Related Articles

# The Ubiquitous Binary Search | Set 1

We are aware of the binary search algorithm. Binary search is the easiest algorithm to get right. I present some interesting problems that I collected on binary search. There were some requests on binary search. I request you to honor the code, “I sincerely attempt to solve the problem and ensure there are no corner cases”. After reading each problem, minimize the browser and try solving it.

Problem Statement: Given a sorted array of N distinct elements, find a key in the array using the least number of comparisons. (Do you think binary search is optimal to search a key in sorted array?) Without much theory, here is typical binary search algorithm.

## C++

 `// Returns location of key, or -1 if not found``int` `BinarySearch(``int` `A[], ``int` `l, ``int` `r, ``int` `key){``    ``int` `m;``    ``while``( l <= r ){``        ``m = l + (r-l)/2;` `        ``if``( A[m] == key ) ``// first comparison``            ``return` `m;` `        ``if``( A[m] < key ) ``// second comparison``            ``l = m + 1;``        ``else``            ``r = m - 1;``    ``}``    ``return` `-1;``}``// THIS CODE IS CONTRIBUTED BY YASH AGARWAL(YASHAGARWAL2852002)`

## C

 `// Returns location of key, or -1 if not found``int` `BinarySearch(``int` `A[], ``int` `l, ``int` `r, ``int` `key)``{``    ``int` `m;` `    ``while``( l <= r )``    ``{``        ``m = l + (r-l)/2;` `        ``if``( A[m] == key ) ``// first comparison``            ``return` `m;` `        ``if``( A[m] < key ) ``// second comparison``            ``l = m + 1;``        ``else``            ``r = m - 1;``    ``}` `    ``return` `-1;``}`

## Java

 `// Java code to implement the approach``import` `java.util.*;` `class` `GFG {` `// Returns location of key, or -1 if not found``static` `int` `BinarySearch(``int` `A[], ``int` `l, ``int` `r, ``int` `key)``{``    ``int` `m;` `    ``while``( l < r )``    ``{``        ``m = l + (r-l)/``2``;` `        ``if``( A[m] == key ) ``// first comparison``            ``return` `m;` `        ``if``( A[m] < key ) ``// second comparison``            ``l = m + ``1``;``        ``else``            ``r = m - ``1``;``    ``}` `    ``return` `-``1``;``}``}` `// This code is contributed by sanjoy_62.`

## Python3

 `# Returns location of key, or -1 if not found``def` `BinarySearch(A, l, r, key):``    ``while` `(l < r):``        ``m ``=` `l ``+` `(r ``-` `l) ``/``/` `2``        ``if` `A[m] ``=``=` `key: ``#first comparison``            ``return` `m``        ``if` `A[m] < key: ``# second comparison``            ``l ``=` `m ``+` `1``        ``else``:``            ``r ``=` `m ``-` `1``    ``return` `-``1``""" This code is contributed by Rajat Kumar """`

## C#

 `// C# program to implement``// the above approach``using` `System;` `class` `GFG``{` `// Returns location of key, or -1 if not found``static` `int` `BinarySearch(``int``[] A, ``int` `l, ``int` `r, ``int` `key)``{``    ``int` `m;` `    ``while``( l < r )``    ``{``        ``m = l + (r-l)/2;` `        ``if``( A[m] == key ) ``// first comparison``            ``return` `m;` `        ``if``( A[m] < key ) ``// second comparison``            ``l = m + 1;``        ``else``            ``r = m - 1;``    ``}` `    ``return` `-1;``}``}` `// This code is contributed by code_hunt.`

## Javascript

 ``

Theoretically we need log N + 1 comparisons in worst case. If we observe, we are using two comparisons per iteration except during final successful match, if any. In practice, comparison would be costly operation, it won’t be just primitive type comparison. It is more economical to minimize comparisons as that of theoretical limit. See below figure on initialize of indices in the next implementation.

The following implementation uses fewer number of comparisons.

## C++

 `// Invariant: A[l] <= key and A[r] > key``// Boundary: |r - l| = 1``// Input: A[l .... r-1]``int` `BinarySearch(``int` `A[], ``int` `l, ``int` `r, ``int` `key)``{``    ``int` `m;` `    ``while``( r - l > 1 )``    ``{``        ``m = l + (r-l)/2;` `        ``if``( A[m] <= key )``            ``l = m;``        ``else``            ``r = m;``    ``}` `    ``if``( A[l] == key )``        ``return` `l;``    ``if``( A[r] == key )``        ``return` `r;``    ``else``        ``return` `-1;``}``//this code is contributed by aditya942003patil`

## C

 `// Invariant: A[l] <= key and A[r] > key``// Boundary: |r - l| = 1``// Input: A[l .... r-1]``int` `BinarySearch(``int` `A[], ``int` `l, ``int` `r, ``int` `key)``{``    ``int` `m;` `    ``while``( r - l > 1 )``    ``{``        ``m = l + (r-l)/2;` `        ``if``( A[m] <= key )``            ``l = m;``        ``else``            ``r = m;``    ``}` `    ``if``( A[l] == key )``        ``return` `l;``    ``if``( A[r] == key )``        ``return` `r;``    ``else``        ``return` `-1;``}`

## Java

 `// Java function for above algorithm` `// Invariant: A[l] <= key and A[r] > key``// Boundary: |r - l| = 1``// Input: A[l .... r-1]``int` `BinarySearch(``int` `A[], ``int` `l, ``int` `r, ``int` `key)``{``  ``int` `m;` `  ``while``( r - l k > ``1` `)` `  ``{``    ``m = l + k(r - l)/``2``;` `    ``if``( A[m]k <= key )``      ``l = km;``    ``elsek``      ``r = m;``  ``}` `  ``if``( A[l] == key )``    ``return` `l;``  ``if``( A[r] == key )``    ``return` `r;``  ``else``    ``return` `-``1``;``}``//this code is contributed by Akshay Tripathi(akshaytripathi630)`

## Python3

 `# Invariant: A[l] <= key and A[r] > key``# Boundary: |r - l| = 1``# Input: A[l .... r-1]` `def` `BinarySearch(A, l, r, key):``    ``while` `(r``-``l > ``1``):``        ``m ``=` `l``+``(r``-``l)``/``/``2``        ``if` `A[m] <``=` `key:``            ``l ``=` `m``        ``else``:``            ``r ``=` `m``    ``if` `A[l] ``=``=` `key:``        ``return` `l``    ``if` `A[r] ``=``=` `key:``        ``return` `r``    ``return` `-``1`  `""" Code is written by Rajat Kumar"""`

## C#

 `// C# conversion` `// Invariant: A[l] <= key and A[r] > key``// Boundary: |r - l| = 1``// Input: A[l .... r-1]``int` `BinarySearch(``int``[] A, ``int` `l, ``int` `r, ``int` `key)``{``    ``int` `m;` `    ``while` `(r - l > 1) {``        ``m = l + (r - l) / 2;` `        ``if` `(A[m] <= key)``            ``l = m;``        ``else``            ``r = m;``    ``}` `    ``if` `(A[l] == key)``        ``return` `l;``    ``if` `(A[r] == key)``        ``return` `r;``    ``else``        ``return` `-1;``}` `// This code is contributed by akashish__`

## Javascript

 `// Invariant: A[l] <= key and A[r] > key``// Boundary: |r - l| = 1``// Input: A[l .... r-1]``function` `BinarySearch(A, l, r, key)``{``    ``let m;` `    ``while``( r - l > 1 )``    ``{``        ``m = l + (r-l)/2;` `        ``if``( A[m] <= key )``            ``l = m;``        ``else``            ``r = m;``    ``}` `    ``if``( A[l] == key )``        ``return` `l;``    ``if``( A[r] == key )``        ``return` `r;``    ``else``        ``return` `-1;``}`

In the while loop we are depending only on one comparison. The search space converges to place l and r point two different consecutive elements. We need one more comparison to trace search status. You can see sample test case http://ideone.com/76bad0. (C++11 code

Problem Statement: Given an array of N distinct integers, find floor value of input ‘key’. Say, A = {-1, 2, 3, 5, 6, 8, 9, 10} and key = 7, we should return 6 as outcome. We can use the above optimized implementation to find floor value of key. We keep moving the left pointer to right most as long as the invariant holds. Eventually left pointer points an element less than or equal to key (by definition floor value). The following are possible corner cases, —> If all elements in the array are smaller than key, left pointer moves till last element. —> If all elements in the array are greater than key, it is an error condition. —> If all elements in the array equal and <= key, it is worst case input to our implementation.

Here is implementation,

## C++

 `// largest value <= key``// Invariant: A[l] <= key and A[r] > key``// Boundary: |r - l| = 1``// Input: A[l .... r-1]``// Precondition: A[l] <= key <= A[r]``int` `Floor(``int` `A[], ``int` `l, ``int` `r, ``int` `key)``{``    ``int` `m;` `    ``while``( r - l > 1 )``    ``{``        ``m = l + (r - l)/2;` `        ``if``( A[m] <= key )``            ``l = m;``        ``else``            ``r = m;``    ``}` `    ``return` `A[l];``}` `// Initial call``int` `Floor(``int` `A[], ``int` `size, ``int` `key)``{``    ``// Add error checking if key < A[0]``    ``if``( key < A[0] )``        ``return` `-1;` `    ``// Observe boundaries``    ``return` `Floor(A, 0, size, key);``}``//this code is contributed by aditya942003patil`

## C

 `// largest value <= key``// Invariant: A[l] <= key and A[r] > key``// Boundary: |r - l| = 1``// Input: A[l .... r-1]``// Precondition: A[l] <= key <= A[r]``int` `Floor(``int` `A[], ``int` `l, ``int` `r, ``int` `key)``{``    ``int` `m;` `    ``while``( r - l > 1 )``    ``{``        ``m = l + (r - l)/2;` `        ``if``( A[m] <= key )``            ``l = m;``        ``else``            ``r = m;``    ``}` `    ``return` `A[l];``}` `// Initial call``int` `Floor(``int` `A[], ``int` `size, ``int` `key)``{``    ``// Add error checking if key < A[0]``    ``if``( key < A[0] )``        ``return` `-1;` `    ``// Observe boundaries``    ``return` `Floor(A, 0, size, key);``}`

## Java

 `public` `class` `Floor {``    ``// This function returns the largest value in A that is``    ``// less than or equal to key. Invariant: A[l] <= key and``    ``// A[r] > key Boundary: |r - l| = 1 Input: A[l .... r-1]``    ``// Precondition: A[l] <= key <= A[r]``    ``static` `int` `floor(``int``[] A, ``int` `l, ``int` `r, ``int` `key)``    ``{``        ``int` `m;` `        ``while` `(r - l > ``1``) {``            ``m = l + (r - l) / ``2``;` `            ``if` `(A[m] <= key)``                ``l = m;``            ``else``                ``r = m;``        ``}` `        ``return` `A[l];``    ``}` `    ``// Initial call``    ``static` `int` `floor(``int``[] A, ``int` `size, ``int` `key)``    ``{``        ``// Add error checking if key < A[0]``        ``if` `(key < A[``0``])``            ``return` `-``1``;` `        ``// Observe boundaries``        ``return` `floor(A, ``0``, size, key);``    ``}` `    ``public` `static` `void` `main(String[] args)``    ``{``        ``int``[] arr = { ``1``, ``2``, ``3``, ``4``, ``5` `};``        ``System.out.println(floor(arr, arr.length - ``1``, ``3``));``    ``}``}`

## Python3

 `# largest value <= key``# Invariant: A[l] <= key and A[r] > key``# Boundary: |r - l| = 1``# Input: A[l .... r-1]``# Precondition: A[l] <= key <= A[r]``def` `Floor(A,l,r,key):``    ``while` `(r``-``l>``1``):``        ``m``=``l``+``(r``-``l)``/``/``2``        ``if` `A[m]<``=``key:``            ``l``=``m``        ``else``:``            ``r``=``m``    ``return` `A[l]``# Initial call``def` `Floor(A,size,key):``    ``# Add error checking if key < A[0]``    ``if` `key

## C#

 `using` `System;` `public` `class` `Floor {``    ``// This function returns the largest value in A that is``    ``// less than or equal to key. Invariant: A[l] <= key and``    ``// A[r] > key Boundary: |r - l| = 1 Input: A[l .... r-1]``    ``// Precondition: A[l] <= key <= A[r]``    ``static` `int` `floor(``int``[] A, ``int` `l, ``int` `r, ``int` `key)``    ``{``        ``int` `m;` `        ``while` `(r - l > 1) {``            ``m = l + (r - l) / 2;` `            ``if` `(A[m] <= key)``                ``l = m;``            ``else``                ``r = m;``        ``}` `        ``return` `A[l];``    ``}` `    ``// Initial call``    ``static` `int` `floor(``int``[] A, ``int` `size, ``int` `key)``    ``{``        ``// Add error checking if key < A[0]``        ``if` `(key < A[0])``            ``return` `-1;` `        ``// Observe boundaries``        ``return` `floor(A, 0, size, key);``    ``}` `    ``public` `static` `void` `Main(``string``[] args)``    ``{``        ``int``[] arr = { 1, 2, 3, 4, 5 };``        ``Console.WriteLine(floor(arr, arr.Length - 1, 3));``    ``}``}``// This code is contributed by sarojmcy2e`

## Javascript

 `// largest value <= key``// Invariant: A[l] <= key and A[r] > key``// Boundary: |r - l| = 1``// Input: A[l .... r-1]``// Precondition: A[l] <= key <= A[r]``function` `Floor(A, l, r, key){``    ``let m;``    ``while``(r - l > 1){``        ``m = l + parseInt((r-l)/2);``        ``if``(A[m] <= key) l = m;``        ``else` `r = m;``    ``}``    ``return` `A[l];``}` `// Initial call``function` `Floor(A, size, key)``{``    ``// Add error checking if key < A[0]``    ``if``( key < A[0] )``        ``return` `-1;`` ` `    ``// Observe boundaries``    ``return` `Floor(A, 0, size, key);``}` `// THIS CODE IS CONTRIBUTED BY YASH AGARWAL(YASHAGAWRAL2852002)`

You can see some test cases http://ideone.com/z0Kx4a

Problem Statement: Given a sorted array with possible duplicate elements. Find number of occurrences of input ‘key’ in log N time. The idea here is finding left and right most occurrences of key in the array using binary search. We can modify floor function to trace right most occurrence and left most occurrence.

Here is implementation,

## C

 `// Input: Indices Range [l ... r)``// Invariant: A[l] <= key and A[r] > key``int` `GetRightPosition(``int` `A[], ``int` `l, ``int` `r, ``int` `key)``{``    ``int` `m;` `    ``while``( r - l > 1 )``    ``{``        ``m = l + (r - l)/2;` `        ``if``( A[m] <= key )``            ``l = m;``        ``else``            ``r = m;``    ``}` `    ``return` `l;``}` `// Input: Indices Range (l ... r]``// Invariant: A[r] >= key and A[l] > key``int` `GetLeftPosition(``int` `A[], ``int` `l, ``int` `r, ``int` `key)``{``    ``int` `m;` `    ``while``( r - l > 1 )``    ``{``        ``m = l + (r - l)/2;` `        ``if``( A[m] >= key )``            ``r = m;``        ``else``            ``l = m;``    ``}` `    ``return` `r;``}` `int` `CountOccurrences(``int` `A[], ``int` `size, ``int` `key)``{``    ``// Observe boundary conditions``    ``int` `left = GetLeftPosition(A, -1, size-1, key);``    ``int` `right = GetRightPosition(A, 0, size, key);` `    ``// What if the element doesn't exists in the array?``    ``// The checks helps to trace that element exists``    ``return` `(A[left] == key && key == A[right])?``        ``(right - left + 1) : 0;``}`

## Python3

 `# Input: Indices Range [l ... r)``# Invariant: A[l] <= key and A[r] > key` `def` `GetRightPosition(A,l,r,key):``    ``while` `r``-``l>``1``:``        ``m``=``l``+``(r``-``l)``/``/``2``        ``if` `A[m]<``=``key:``            ``l``=``m``        ``else``:``            ``r``=``m``    ``return` `l``# Input: Indices Range (l ... r]``# Invariant: A[r] >= key and A[l] > key``def` `GetLeftPosition(A,l,r,key):``    ``while` `r``-``l>``1``:``        ``m``=``l``+``(r``-``l)``/``/``2``        ``if` `A[m]>``=``key:``            ``r``=``m``        ``else``:``            ``l``=``m``    ``return` `r``def` `countOccurrences(A,size,key):``    ``#Observe boundary conditions``    ``left``=``GetLeftPosition(A,``-``1``,size``-``1``,key)``    ``right``=``GetRightPosition(A,``0``,size,key)``    ``# What if the element doesn't exists in the array?``    ``# The checks helps to trace that element exists` `    ``if` `A[left]``=``=``key ``and` `key``=``=``A[right]:``        ``return` `right``-``left``+``1``    ``return` `0``"""Code is written by Rajat Kumar"""`

## C++

 `#include ` `// Input: Indices Range [l ... r)``// Invariant: A[l] <= key and A[r] > key``int` `GetRightPosition(``int` `A[], ``int` `l, ``int` `r, ``int` `key)``{``    ``int` `m;` `    ``while``( r - l > 1 )``    ``{``        ``m = l + (r - l)/2;` `        ``if``( A[m] <= key )``            ``l = m;``        ``else``            ``r = m;``    ``}` `    ``return` `l;``}` `// Input: Indices Range (l ... r]``// Invariant: A[r] >= key and A[l] > key``int` `GetLeftPosition(``int` `A[], ``int` `l, ``int` `r, ``int` `key)``{``    ``int` `m;` `    ``while``( r - l > 1 )``    ``{``        ``m = l + (r - l)/2;` `        ``if``( A[m] >= key )``            ``r = m;``        ``else``            ``l = m;``    ``}` `    ``return` `r;``}` `int` `CountOccurrences(``int` `A[], ``int` `size, ``int` `key)``{``    ``// Observe boundary conditions``    ``int` `left = GetLeftPosition(A, -1, size-1, key);``    ``int` `right = GetRightPosition(A, 0, size, key);` `    ``// What if the element doesn't exists in the array?``    ``// The checks helps to trace that element exists``    ``return` `(A[left] == key && key == A[right])?``           ``(right - left + 1) : 0;``}` `int` `main()``{``    ``int` `A[] = {1, 1, 2, 3, 3, 3, 3, 3, 4, 4, 5};``    ``int` `size = ``sizeof``(A) / ``sizeof``(A[0]);``    ``int` `key = 3;` `    ``std::cout << ``"Number of occurances of "` `<< key << ``": "` `<< CountOccurances(A, size, key) << std::endl;` `    ``return` `0;``}`  `//code is written by khushboogoyal499`

## Java

 `public` `class` `OccurrencesInSortedArray {``    ``// Returns the index of the leftmost occurrence of the``    ``// given key in the array``    ``private` `static` `int` `getLeftPosition(``int``[] arr, ``int` `left,``                                       ``int` `right, ``int` `key)``    ``{``        ``while` `(right - left > ``1``) {``            ``int` `mid = left + (right - left) / ``2``;``            ``if` `(arr[mid] >= key) {``                ``right = mid;``            ``}``            ``else` `{``                ``left = mid;``            ``}``        ``}``        ``return` `right;``    ``}` `    ``// Returns the index of the rightmost occurrence of the``    ``// given key in the array``    ``private` `static` `int` `getRightPosition(``int``[] arr, ``int` `left,``                                        ``int` `right, ``int` `key)``    ``{``        ``while` `(right - left > ``1``) {``            ``int` `mid = left + (right - left) / ``2``;``            ``if` `(arr[mid] <= key) {``                ``left = mid;``            ``}``            ``else` `{``                ``right = mid;``            ``}``        ``}``        ``return` `left;``    ``}` `    ``// Returns the count of occurrences of the given key in``    ``// the array``    ``public` `static` `int` `countOccurrences(``int``[] arr, ``int` `key)``    ``{``        ``int` `left``            ``= getLeftPosition(arr, -``1``, arr.length - ``1``, key);``        ``int` `right``            ``= getRightPosition(arr, ``0``, arr.length, key);` `        ``if` `(arr[left] == key && key == arr[right]) {``            ``return` `right - left + ``1``;``        ``}``        ``return` `0``;``    ``}` `    ``public` `static` `void` `main(String[] args)``    ``{``        ``int``[] arr = { ``1``, ``2``, ``2``, ``2``, ``3``, ``4``, ``4``, ``5``, ``5` `};``        ``int` `key = ``2``;``        ``System.out.println(``            ``countOccurrences(arr, key)); ``// Output: 3``    ``}``}`

## C#

 `using` `System;` `public` `class` `OccurrencesInSortedArray``{``    ``// Returns the index of the leftmost occurrence of the``    ``// given key in the array``    ``private` `static` `int` `getLeftPosition(``int``[] arr, ``int` `left,``                                       ``int` `right, ``int` `key)``    ``{``        ``while` `(right - left > 1)``        ``{``            ``int` `mid = left + (right - left) / 2;``            ``if` `(arr[mid] >= key)``            ``{``                ``right = mid;``            ``}``            ``else``            ``{``                ``left = mid;``            ``}``        ``}``        ``return` `right;``    ``}` `    ``// Returns the index of the rightmost occurrence of the``    ``// given key in the array``    ``private` `static` `int` `getRightPosition(``int``[] arr, ``int` `left,``                                        ``int` `right, ``int` `key)``    ``{``        ``while` `(right - left > 1)``        ``{``            ``int` `mid = left + (right - left) / 2;``            ``if` `(arr[mid] <= key)``            ``{``                ``left = mid;``            ``}``            ``else``            ``{``                ``right = mid;``            ``}``        ``}``        ``return` `left;``    ``}` `    ``// Returns the count of occurrences of the given key in``    ``// the array``    ``public` `static` `int` `countOccurrences(``int``[] arr, ``int` `key)``    ``{``        ``int` `left = getLeftPosition(arr, -1, arr.Length - 1, key);``        ``int` `right = getRightPosition(arr, 0, arr.Length, key);` `        ``if` `(arr[left] == key && key == arr[right])``        ``{``            ``return` `right - left + 1;``        ``}``        ``return` `0;``    ``}` `    ``public` `static` `void` `Main(``string``[] args)``    ``{``        ``int``[] arr = { 1, 2, 2, 2, 3, 4, 4, 5, 5 };``        ``int` `key = 2;``        ``Console.WriteLine(countOccurrences(arr, key)); ``// Output: 3``    ``}``}`

Sample code http://ideone.com/zn6R6a

Problem Statement: Given a sorted array of distinct elements, and the array is rotated at an unknown position. Find minimum element in the array. We can see  pictorial representation of sample input array in the below figure.

We converge the search space till l and r points single element. If the middle location falls in the first pulse, the condition A[m] < A[r] doesn’t satisfy, we converge our search space to A[m+1 … r]. If the middle location falls in the second pulse, the condition A[m] < A[r] satisfied, we converge our search space to A[1 … m]. At every iteration we check for search space size, if it is 1, we are done.

Given below is implementation of algorithm. Can you come up with different implementation?

## C

 `int` `BinarySearchIndexOfMinimumRotatedArray(``int` `A[], ``int` `l, ``int` `r)``{``    ``// extreme condition, size zero or size two``    ``int` `m;` `    ``// Precondition: A[l] > A[r]``    ``if``( A[l] <= A[r] )``        ``return` `l;` `    ``while``( l <= r )``    ``{``        ``// Termination condition (l will eventually falls on r, and r always``        ``// point minimum possible value)``        ``if``( l == r )``            ``return` `l;` `        ``m = l + (r-l)/2; ``// 'm' can fall in first pulse,``                        ``// second pulse or exactly in the middle` `        ``if``( A[m] < A[r] )``            ``// min can't be in the range``            ``// (m < i <= r), we can exclude A[m+1 ... r]``            ``r = m;``        ``else``            ``// min must be in the range (m < i <= r),``            ``// we must search in A[m+1 ... r]``            ``l = m+1;``    ``}` `    ``return` `-1;``}` `int` `BinarySearchIndexOfMinimumRotatedArray(``int` `A[], ``int` `size)``{``    ``return` `BinarySearchIndexOfMinimumRotatedArray(A, 0, size-1);``}`

## C++

 `int` `BinarySearchIndexOfMinimumRotatedArray(``int` `A[], ``int` `l, ``int` `r)``{``    ``// extreme condition, size zero or size two``    ``int` `m;` `    ``// Precondition: A[l] > A[r]``    ``if``( A[l] >= A[r] )``        ``return` `l;` `    ``while``( l <= r )``    ``{``        ``// Termination condition (l will eventually falls on r, and r always``        ``// point minimum possible value)``        ``if``( l == r )``            ``return` `l;` `        ``m = l + (r-l)/2; ``// 'm' can fall in first pulse,``                        ``// second pulse or exactly in the middle` `        ``if``( A[m] < A[r] )``            ``// min can't be in the range``            ``// (m < i <= r), we can exclude A[m+1 ... r]``            ``r = m;``        ``else``            ``// min must be in the range (m < i <= r),``            ``// we must search in A[m+1 ... r]``            ``l = m+1;``    ``}` `    ``return` `-1;``}` `int` `BinarySearchIndexOfMinimumRotatedArray(``int` `A[], ``int` `size)``{``    ``return` `BinarySearchIndexOfMinimumRotatedArray(A, 0, size-1);``}``//this code is contributed by aditya942003patil`

## Java

 `public` `static` `int` `binarySearchIndexOfMinimumRotatedArray(``int` `A[], ``int` `l, ``int` `r)``{` `  ``// extreme condition, size zero or size two ``  ``int` `m;` `  ``// Precondition: A[l] > A[r]``  ``if` `(A[l] >= A[r]) {``    ``return` `l;``  ``}` `  ``while` `(l <= r) {``    ``// Termination condition (l will eventually falls on r, and r always``    ``// point minimum possible value)``    ``if` `(l == r) {``      ``return` `l;``    ``}` `    ``m = l + (r - l) / ``2``;` `    ``if` `(A[m] < A[r]) {``      ``// min can't be in the range``      ``// (m < i <= r), we can exclude A[m+1 ... r]``      ``r = m;``    ``} ``else` `{``      ``// min must be in the range (m < i <= r),``      ``// we must search in A[m+1 ... r]``      ``l = m + ``1``;``    ``}``  ``}` `  ``return` `-``1``;``}` `public` `static` `int` `binarySearchIndexOfMinimumRotatedArray(``int` `A[], ``int` `size) {``  ``return` `binarySearchIndexOfMinimumRotatedArray(A, ``0``, size - ``1``);``}`

## Python3

 `def` `BinarySearchIndexOfMinimumRotatedArray(A, l, r):``    ``# extreme condition, size zero or size two``    ``# Precondition: A[l] > A[r]``    ``if` `A[l] >``=` `A[r]:``        ``return` `l``    ``while` `(l <``=` `r):``        ``# Termination condition (l will eventually falls on r, and r always``        ``# point minimum possible value)``        ``if` `l ``=``=` `r:``            ``return` `l``        ``m ``=` `l``+``(r``-``l)``/``/``2`  `# 'm' can fall in first pulse,``        ``# second pulse or exactly in the middle``        ``if` `A[m] < A[r]:``             ``# min can't be in the range``             ``# (m < i <= r), we can exclude A[m+1 ... r]``            ``r ``=` `m``        ``else``:``             ``# min must be in the range (m < i <= r),``             ``# we must search in A[m+1 ... r]` `            ``l ``=` `m``+``1``    ``return` `-``1`  `def` `BinarySearchIndexOfMinimumRotatedArray(A, size):``    ``return` `BinarySearchIndexOfMinimumRotatedArray(A, ``0``, size``-``1``)`  `"""Code is written by Rajat Kumar"""`

## Javascript

 `function` `BinarySearchIndexOfMinimumRotatedArray(A, l, r){``    ``// extreme condition, size zero or size two``    ``let m;``    ` `    ``// Precondition: A[l] > A[r]``    ``if``(A[l] <= A[r]) ``return` `l;``    ` `    ``while``(l <= r){``        ``// Termination condition (l will eventually falls on r, and r always``        ``// point minimum possible value)``        ``if``(l == r) ``return` `l;``        ``m = l + (r-l)/2;``        ``if``(A[m] < A[r]){``            ``// min can't be in the range``            ``// (m < i <= r), we can exclude A[m+1 ... r]``            ``r = m;``        ``}``else``{``            ``// min must be in the range (m < i <= r),``            ``// we must search in A[m+1 ... r]``            ``l = m+1;``        ``}``    ``}``    ``return` `-1;``}` `function` `BinarySearchIndexOfMinimumRotatedArray(A, size){``    ``return` `BinarySearchIndexOfMinimumRotatedArray(A, 0, size-1);``}`

See sample test cases http://ideone.com/KbwDrk

Exercises:

1. A function called signum(x, y) is defined as,

```signum(x, y) = -1 if x < y
=  0 if x = y
=  1 if x > y```

Did you come across any instruction set in which a comparison behaves like signum function? Can it make the first implementation of binary search optimal?

2. Implement ceil function replica of floor function.

3. Discuss with your friends “Is binary search optimal (results in the least number of comparisons)? Why not ternary search or interpolation search on a sorted array? When do you prefer ternary or interpolation search over binary search?”

4. Draw a tree representation of binary search (believe me, it helps you a lot to understand much internals of binary search).

Stay tuned, I will cover few more interesting problems using binary search in upcoming articles. I welcome your comments. – – – by Venki. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.