The Stock Span Problem
- Difficulty Level : Medium
- Last Updated : 26 Jul, 2022
The stock span problem is a financial problem where we have a series of n daily price quotes for a stock and we need to calculate the span of the stock’s price for all n days. The span Si of the stock’s price on a given day i is defined as the maximum number of consecutive days just before the given day, for which the price of the stock on the current day is less than its price on the given day.
Example:
Input: N = 7, price[] = [100 80 60 70 60 75 85]
Output: 1 1 1 2 1 4 6
Explanation: Traversing the given input span for 100 will be 1, 80 is smaller than 100 so the span is 1, 60 is smaller than 80 so the span is 1, 70 is greater than 60 so the span is 2 and so on. Hence the output will be 1 1 1 2 1 4 6.![]()
Input: N = 6, price[] = [10 4 5 90 120 80]
Output:1 1 2 4 5 1
Explanation: Traversing the given input span for 10 will be 1, 4 is smaller than 10 so the span will be 1, 5 is greater than 4 so the span will be 2 and so on. Hence, the output will be 1 1 2 4 5 1.
A Simple but inefficient method
Traverse the input price array. For every element being visited, traverse elements on the left of it and increment the span value of it while elements on the left side are smaller.Following is the implementation of this method:
C++
// C++ program for brute force method
// to calculate stock span values
#include <bits/stdc++.h>
using
namespace
std;
// Fills array S[] with span values
void
calculateSpan(
int
price[],
int
n,
int
S[])
{
// Span value of first day is always 1
S[0] = 1;
// Calculate span value of remaining days
// by linearly checking previous days
for
(
int
i = 1; i < n; i++)
{
S[i] = 1;
// Initialize span value
// Traverse left while the next element
// on left is smaller than price[i]
for
(
int
j = i - 1; (j >= 0) &&
(price[i] >= price[j]); j--)
S[i]++;
}
}
// A utility function to print elements of array
void
printArray(
int
arr[],
int
n)
{
for
(
int
i = 0; i < n; i++)
cout << arr[i] <<
" "
;
}
// Driver code
int
main()
{
int
price[] = { 10, 4, 5, 90, 120, 80 };
int
n =
sizeof
(price) /
sizeof
(price[0]);
int
S[n];
// Fill the span values in array S[]
calculateSpan(price, n, S);
// print the calculated span values
printArray(S, n);
return
0;
}
// This is code is contributed by rathbhupendra
C
// C program for brute force method to calculate stock span values
#include <stdio.h>
// Fills array S[] with span values
void
calculateSpan(
int
price[],
int
n,
int
S[])
{
// Span value of first day is always 1
S[0] = 1;
// Calculate span value of remaining days by linearly checking
// previous days
for
(
int
i = 1; i < n; i++) {
S[i] = 1;
// Initialize span value
// Traverse left while the next element on left is smaller
// than price[i]
for
(
int
j = i - 1; (j >= 0) && (price[i] >= price[j]); j--)
S[i]++;
}
}
// A utility function to print elements of array
void
printArray(
int
arr[],
int
n)
{
for
(
int
i = 0; i < n; i++)
printf
(
"%d "
, arr[i]);
}
// Driver program to test above function
int
main()
{
int
price[] = { 10, 4, 5, 90, 120, 80 };
int
n =
sizeof
(price) /
sizeof
(price[0]);
int
S[n];
// Fill the span values in array S[]
calculateSpan(price, n, S);
// print the calculated span values
printArray(S, n);
return
0;
}
Java
// Java implementation for brute force method to calculate stock span values
import
java.util.Arrays;
class
GFG {
// method to calculate stock span values
static
void
calculateSpan(
int
price[],
int
n,
int
S[])
{
// Span value of first day is always 1
S[
0
] =
1
;
// Calculate span value of remaining days by linearly checking
// previous days
for
(
int
i =
1
; i < n; i++) {
S[i] =
1
;
// Initialize span value
// Traverse left while the next element on left is smaller
// than price[i]
for
(
int
j = i -
1
; (j >=
0
) && (price[i] >= price[j]); j--)
S[i]++;
}
}
// A utility function to print elements of array
static
void
printArray(
int
arr[])
{
System.out.print(Arrays.toString(arr));
}
// Driver program to test above functions
public
static
void
main(String[] args)
{
int
price[] = {
10
,
4
,
5
,
90
,
120
,
80
};
int
n = price.length;
int
S[] =
new
int
[n];
// Fill the span values in array S[]
calculateSpan(price, n, S);
// print the calculated span values
printArray(S);
}
}
// This code is contributed by Sumit Ghosh
Python3
# Python program for brute force method to calculate stock span values
# Fills list S[] with span values
def
calculateSpan(price, n, S):
# Span value of first day is always 1
S[
0
]
=
1
# Calculate span value of remaining days by linearly
# checking previous days
for
i
in
range
(
1
, n,
1
):
S[i]
=
1
# Initialize span value
# Traverse left while the next element on left is
# smaller than price[i]
j
=
i
-
1
while
(j>
=
0
)
and
(price[i] >
=
price[j]) :
S[i]
+
=
1
j
-
=
1
# A utility function to print elements of array
def
printArray(arr, n):
for
i
in
range
(n):
(arr[i], end
=
" "
)
# Driver program to test above function
price
=
[
10
,
4
,
5
,
90
,
120
,
80
]
n
=
len
(price)
S
=
[
None
]
*
n
# Fill the span values in list S[]
calculateSpan(price, n, S)
# print the calculated span values
printArray(S, n)
# This code is contributed by Sunny Karira
C#
// C# implementation for brute force method
// to calculate stock span values
using
System;
class
GFG {
// method to calculate stock span values
static
void
calculateSpan(
int
[] price,
int
n,
int
[] S)
{
// Span value of first day is always 1
S[0] = 1;
// Calculate span value of remaining
// days by linearly checking previous
// days
for
(
int
i = 1; i < n; i++) {
S[i] = 1;
// Initialize span value
// Traverse left while the next
// element on left is smaller
// than price[i]
for
(
int
j = i - 1; (j >= 0) && (price[i] >= price[j]); j--)
S[i]++;
}
}
// A utility function to print elements
// of array
static
void
printArray(
int
[] arr)
{
string
result =
string
.Join(
" "
, arr);
Console.WriteLine(result);
}
// Driver function
public
static
void
Main()
{
int
[] price = { 10, 4, 5, 90, 120, 80 };
int
n = price.Length;
int
[] S =
new
int
[n];
// Fill the span values in array S[]
calculateSpan(price, n, S);
// print the calculated span values
printArray(S);
}
}
// This code is contributed by Sam007.
PHP
<?php
// PHP program for brute force method
// to calculate stock span values
// Fills array S[] with span values
function
calculateSpan(
$price
,
$n
,
$S
)
{
// Span value of first
// day is always 1
$S
[0] = 1;
// Calculate span value of
// remaining days by linearly
// checking previous days
for
(
$i
= 1;
$i
<
$n
;
$i
++)
{
// Initialize span value
$S
[
$i
] = 1;
// Traverse left while the next
// element on left is smaller
// than price[i]
for
(
$j
=
$i
- 1; (
$j
>= 0) &&
(
$price
[
$i
] >=
$price
[
$j
]);
$j
--)
$S
[
$i
]++;
}
// print the calculated
// span values
for
(
$i
= 0;
$i
<
$n
;
$i
++)
echo
$S
[
$i
] .
" "
;;
}
// Driver Code
$price
=
array
(10, 4, 5, 90, 120, 80);
$n
=
count
(
$price
);
$S
=
array
(
$n
);
// Fill the span values in array S[]
calculateSpan(
$price
,
$n
,
$S
);
// This code is contributed by Sam007
?>
Javascript
<script>
// Javascript implementation for brute force method
// to calculate stock span values
// method to calculate stock span values
function
calculateSpan(price, n, S)
{
// Span value of first day is always 1
S[0] = 1;
// Calculate span value of remaining
// days by linearly checking previous
// days
for
(let i = 1; i < n; i++) {
S[i] = 1;
// Initialize span value
// Traverse left while the next
// element on left is smaller
// than price[i]
for
(let j = i - 1; (j >= 0) && (price[i] >= price[j]); j--)
S[i]++;
}
}
// A utility function to print elements
// of array
function
printArray(arr)
{
let result = arr.join(
" "
);
document.write(result);
}
let price = [ 10, 4, 5, 90, 120, 80 ];
let n = price.length;
let S =
new
Array(n);
S.fill(0);
// Fill the span values in array S[]
calculateSpan(price, n, S);
// print the calculated span values
printArray(S);
</script>
Output1 1 2 4 5 1The Time Complexity of the above method is O(n^2). We can calculate stock span values in O(n) time.
A Linear-Time Complexity Method
We see that S[i] on the day i can be easily computed if we know the closest day preceding i, such that the price is greater than on that day than the price on the day i. If such a day exists, let’s call it h(i), otherwise, we define h(i) = -1.
The span is now computed as S[i] = i – h(i). See the following diagram.
To implement this logic, we use a stack as an abstract data type to store the days i, h(i), h(h(i)), and so on. When we go from day i-1 to i, we pop the days when the price of the stock was less than or equal to price[i] and then push the value of day i back into the stack.
Following is the implementation of this method.We have to check also for a case when all the stock prices should be the same so therefore we have to just check whether the current stock price is bigger than the previous one or not. We will not pop from the stack when the current and previous stock prices are the same.
C++
// C++ linear time solution for stock span problem
#include <iostream>
#include <stack>
using
namespace
std;
// A stack based efficient method to calculate
// stock span values
void
calculateSpan(
int
price[],
int
n,
int
S[])
{
// Create a stack and push index of first
// element to it
stack<
int
> st;
st.push(0);
// Span value of first element is always 1
S[0] = 1;
// Calculate span values for rest of the elements
for
(
int
i = 1; i < n; i++) {
// Pop elements from stack while stack is not
// empty and top of stack is smaller than
// price[i]
while
(!st.empty() && price[st.top()] <= price[i])
st.pop();
// If stack becomes empty, then price[i] is
// greater than all elements on left of it,
// i.e., price[0], price[1], ..price[i-1]. Else
// price[i] is greater than elements after
// top of stack
S[i] = (st.empty()) ? (i + 1) : (i - st.top());
// Push this element to stack
st.push(i);
}
}
// A utility function to print elements of array
void
printArray(
int
arr[],
int
n)
{
for
(
int
i = 0; i < n; i++)
cout << arr[i] <<
" "
;
}
// Driver program to test above function
int
main()
{
int
price[] = { 10, 4, 5, 90, 120, 80 };
int
n =
sizeof
(price) /
sizeof
(price[0]);
int
S[n];
// Fill the span values in array S[]
calculateSpan(price, n, S);
// print the calculated span values
printArray(S, n);
return
0;
}
Java
// Java linear time solution for stock span problem
import
java.util.ArrayDeque;
import
java.util.Deque;
import
java.util.Arrays;
public
class
GFG {
// A stack based efficient method to calculate
// stock span values
static
void
calculateSpan(
int
price[],
int
n,
int
S[])
{
// Create a stack and push index of first element
// to it
Deque<Integer> st =
new
ArrayDeque<Integer>();
//Stack<Integer> st = new Stack<>();
st.push(
0
);
// Span value of first element is always 1
S[
0
] =
1
;
// Calculate span values for rest of the elements
for
(
int
i =
1
; i < n; i++) {
// Pop elements from stack while stack is not
// empty and top of stack is smaller than
// price[i]
while
(!st.isEmpty() && price[st.peek()] <= price[i])
st.pop();
// If stack becomes empty, then price[i] is
// greater than all elements on left of it, i.e.,
// price[0], price[1], ..price[i-1]. Else price[i]
// is greater than elements after top of stack
S[i] = (st.isEmpty()) ? (i +
1
) : (i - st.peek());
// Push this element to stack
st.push(i);
}
}
// A utility function to print elements of array
static
void
printArray(
int
arr[])
{
System.out.print(Arrays.toString(arr));
}
// Driver method
public
static
void
main(String[] args)
{
int
price[] = {
10
,
4
,
5
,
90
,
120
,
80
};
int
n = price.length;
int
S[] =
new
int
[n];
// Fill the span values in array S[]
calculateSpan(price, n, S);
// print the calculated span values
printArray(S);
}
}
// This code is contributed by Sumit Ghosh
Python3
# Python linear time solution for stock span problem
# A stack based efficient method to calculate s
def
calculateSpan(price, S):
n
=
len
(price)
# Create a stack and push index of first element to it
st
=
[]
st.append(
0
)
# Span value of first element is always 1
S[
0
]
=
1
# Calculate span values for rest of the elements
for
i
in
range
(
1
, n):
# Pop elements from stack while stack is not
# empty and top of stack is smaller than price[i]
while
(
len
(st) >
0
and
price[st[
-
1
]] <
=
price[i]):
st.pop()
# If stack becomes empty, then price[i] is greater
# than all elements on left of it, i.e. price[0],
# price[1], ..price[i-1]. Else the price[i] is
# greater than elements after top of stack
S[i]
=
i
+
1
if
len
(st) <
=
0
else
(i
-
st[
-
1
])
# Push this element to stack
st.append(i)
# A utility function to print elements of array
def
printArray(arr, n):
for
i
in
range
(
0
, n):
(arr[i], end
=
" "
)
# Driver program to test above function
price
=
[
10
,
4
,
5
,
90
,
120
,
80
]
S
=
[
0
for
i
in
range
(
len
(price)
+
1
)]
# Fill the span values in array S[]
calculateSpan(price, S)
# Print the calculated span values
printArray(S,
len
(price))
# This code is contributed by Nikhil Kumar Singh (nickzuck_007)
C#
// C# linear time solution for
// stock span problem
using
System;
using
System.Collections;
class
GFG {
// a linear time solution for
// stock span problem A stack
// based efficient method to calculate
// stock span values
static
void
calculateSpan(
int
[] price,
int
n,
int
[] S)
{
// Create a stack and Push
// index of first element to it
Stack st =
new
Stack();
st.Push(0);
// Span value of first
// element is always 1
S[0] = 1;
// Calculate span values
// for rest of the elements
for
(
int
i = 1; i < n; i++) {
// Pop elements from stack
// while stack is not empty
// and top of stack is smaller
// than price[i]
while
(st.Count > 0 && price[(
int
)st.Peek()] <= price[i])
st.Pop();
// If stack becomes empty, then price[i] is
// greater than all elements on left of it, i.e.,
// price[0], price[1], ..price[i-1]. Else price[i]
// is greater than elements after top of stack
S[i] = (st.Count == 0) ? (i + 1) : (i - (
int
)st.Peek());
// Push this element to stack
st.Push(i);
}
}
// A utility function to print elements of array
static
void
printArray(
int
[] arr)
{
for
(
int
i = 0; i < arr.Length; i++)
Console.Write(arr[i] +
" "
);
}
// Driver method
public
static
void
Main(String[] args)
{
int
[] price = { 10, 4, 5, 90, 120, 80 };
int
n = price.Length;
int
[] S =
new
int
[n];
// Fill the span values in array S[]
calculateSpan(price, n, S);
// print the calculated span values
printArray(S);
}
}
// This code is contributed by Arnab Kundu
Javascript
<script>
// javascript linear time solution for stock span problem
// A stack based efficient method to calculate
// stock span values
function
calculateSpan(price , n , S)
{
// Create a stack and push index of first element
// to it
var
st = [];
st.push(0);
// Span value of first element is always 1
S[0] = 1;
// Calculate span values for rest of the elements
for
(
var
i = 1; i < n; i++) {
// Pop elements from stack while stack is not
// empty and top of stack is smaller than
// price[i]
while
(st.length!==0 && price[st[st.length - 1]] <= price[i])
st.pop();
// If stack becomes empty, then price[i] is
// greater than all elements on left of it, i.e.,
// price[0], price[1], ..price[i-1]. Else price[i]
// is greater than elements after top of stack
S[i] = (st.length===0) ? (i + 1) : (i - st[st.length - 1]);
// Push this element to stack
st.push(i);
}
}
// A utility function to print elements of array
function
printArray(arr) {
document.write(arr);
}
// Driver method
var
price = [ 10, 4, 5, 90, 120, 80 ];
var
n = price.length;
var
S = Array(n).fill(0);
// Fill the span values in array S
calculateSpan(price, n, S);
// print the calculated span values
printArray(S);
// This code contributed by Rajput-Ji
</script>
Output1 1 2 4 5 1Time Complexity: O(n). It seems more than O(n) at first look. If we take a closer look, we can observe that every element of the array is added and removed from the stack at most once. So there are total 2n operations at most. Assuming that a stack operation takes O(1) time, we can say that the time complexity is O(n).
Auxiliary Space: O(n) in the worst case when all elements are sorted in decreasing order.Another approach: (without using stack)
C++
// C++ program for a linear time solution for stock
// span problem without using stack
#include <iostream>
#include <stack>
using
namespace
std;
// An efficient method to calculate stock span values
// implementing the same idea without using stack
void
calculateSpan(
int
A[],
int
n,
int
ans[])
{
// Span value of first element is always 1
ans[0] = 1;
// Calculate span values for rest of the elements
for
(
int
i = 1; i < n; i++) {
int
counter = 1;
while
((i - counter) >= 0 && A[i] >= A[i - counter]) {
counter += ans[i - counter];
}
ans[i] = counter;
}
}
// A utility function to print elements of array
void
printArray(
int
arr[],
int
n)
{
for
(
int
i = 0; i < n; i++)
cout << arr[i] <<
" "
;
}
// Driver program to test above function
int
main()
{
int
price[] = { 10, 4, 5, 90, 120, 80 };
int
n =
sizeof
(price) /
sizeof
(price[0]);
int
S[n];
// Fill the span values in array S[]
calculateSpan(price, n, S);
// print the calculated span values
printArray(S, n);
return
0;
}
Java
// Java program for a linear time
// solution for stock span problem
// without using stack
class
GFG {
// An efficient method to calculate
// stock span values implementing the
// same idea without using stack
static
void
calculateSpan(
int
A[],
int
n,
int
ans[])
{
// Span value of first element is always 1
ans[
0
] =
1
;
// Calculate span values for rest of the elements
for
(
int
i =
1
; i < n; i++) {
int
counter =
1
;
while
((i - counter) >=
0
&& A[i] >= A[i - counter]) {
counter += ans[i - counter];
}
ans[i] = counter;
}
}
// A utility function to print elements of array
static
void
printArray(
int
arr[],
int
n)
{
for
(
int
i =
0
; i < n; i++)
System.out.print(arr[i] +
" "
);
}
// Driver code
public
static
void
main(String[] args)
{
int
price[] = {
10
,
4
,
5
,
90
,
120
,
80
};
int
n = price.length;
int
S[] =
new
int
[n];
// Fill the span values in array S[]
calculateSpan(price, n, S);
// print the calculated span values
printArray(S, n);
}
}
/* This code contributed by PrinciRaj1992 */
Python3
# Python3 program for a linear time
# solution for stock span problem
# without using stack
# An efficient method to calculate
# stock span values implementing
# the same idea without using stack
def
calculateSpan(A, n, ans):
# Span value of first element
# is always 1
ans[
0
]
=
1
# Calculate span values for rest
# of the elements
for
i
in
range
(
1
, n):
counter
=
1
while
((i
-
counter) >
=
0
and
A[i] >
=
A[i
-
counter]):
counter
+
=
ans[i
-
counter]
ans[i]
=
counter
# A utility function to print elements
# of array
def
printArray(arr, n):
for
i
in
range
(n):
(arr[i], end
=
' '
)
()
# Driver code
price
=
[
10
,
4
,
5
,
90
,
120
,
80
]
n
=
len
(price)
S
=
[
0
]
*
(n)
# Fill the span values in array S[]
calculateSpan(price, n, S)
# Print the calculated span values
printArray(S, n)
# This code is contributed by Prateek Gupta
C#
// C# program for a linear time
// solution for stock span problem
// without using stack
using
System;
public
class
GFG {
// An efficient method to calculate
// stock span values implementing the
// same idea without using stack
static
void
calculateSpan(
int
[] A,
int
n,
int
[] ans)
{
// Span value of first element is always 1
ans[0] = 1;
// Calculate span values for rest of the elements
for
(
int
i = 1; i < n; i++) {
int
counter = 1;
while
((i - counter) >= 0 && A[i] >= A[i - counter]) {
counter += ans[i - counter];
}
ans[i] = counter;
}
}
// A utility function to print elements of array
static
void
printArray(
int
[] arr,
int
n)
{
for
(
int
i = 0; i < n; i++)
Console.Write(arr[i] +
" "
);
}
// Driver code
public
static
void
Main(String[] args)
{
int
[] price = { 10, 4, 5, 90, 120, 80 };
int
n = price.Length;
int
[] S =
new
int
[n];
// Fill the span values in array S[]
calculateSpan(price, n, S);
// print the calculated span values
printArray(S, n);
}
}
// This code has been contributed by 29AjayKumar
Javascript
<script>
// JavaScript program for the above approach;
// An efficient method to calculate stock span values
// implementing the same idea without using stack
function
calculateSpan(A, n, ans)
{
// Span value of first element is always 1
ans[0] = 1;
// Calculate span values for rest of the elements
for
(let i = 1; i < n; i++) {
let counter = 1;
while
((i - counter) >= 0 && A[i] >= A[i - counter]) {
counter += ans[i - counter];
}
ans[i] = counter;
}
}
// A utility function to print elements of array
function
printArray(arr, n) {
for
(let i = 0; i < n; i++)
document.write(arr[i] +
" "
);
}
// Driver program to test above function
let price = [10, 4, 5, 90, 120, 80];
let n = price.length;
let S =
new
Array(n);
// Fill the span values in array S[]
calculateSpan(price, n, S);
// print the calculated span values
printArray(S, n);
// This code is contributed by Potta Lokesh
</script>
Output1 1 2 4 5 1A Stack Based approach :
- In this approach, I have used the data structure stack to implement this task.
- Here, two stacks are used. One stack stores the actual stock prices whereas, the other stack is a temporary stack.
- The stock span problem is solved using only the Push and Pop functions of Stack.
- Just to take input values, I have taken array ‘price’ and to store output, used array ‘span’.
Below is the implementation of the above approach:
C
// C program for the above approach
#include <limits.h>
#include <stdio.h>
#include <stdlib.h>
#define SIZE 6
// change size of stack from here
// change this char to int if
// you want to create stack of
// int. rest all program will work fine
typedef
int
stackentry;
typedef
struct
stack {
stackentry entry[SIZE];
int
top;
} STACK;
// stack is initialized by setting top pointer = -1.
void
initialiseStack(STACK* s) { s->top = -1; }
// to check if stack is full.
int
IsStackfull(STACK s)
{
if
(s.top == SIZE - 1) {
return
(1);
}
return
(0);
}
// to check if stack is empty.
int
IsStackempty(STACK s)
{
if
(s.top == -1) {
return
(1);
}
else
{
return
(0);
}
}
// to push elements into the stack.
void
push(stackentry d, STACK* s)
{
if
(!IsStackfull(*s)) {
s->entry[(s->top) + 1] = d;
s->top = s->top + 1;
}
}
// to pop element from stack.
stackentry pop(STACK* s)
{
stackentry ans;
if
(!IsStackempty(*s)) {
ans = s->entry[s->top];
s->top = s->top - 1;
}
else
{
// '\0' will be returned if
// stack is empty and of
// char type.
if
(
sizeof
(stackentry) == 1)
ans =
'\0'
;
else
// INT_MIN will be returned
// if stack is empty
// and of int type.
ans = INT_MIN;
}
return
(ans);
}
// The code for implementing stock
// span problem is written
// here in main function.
int
main()
{
// Just to store prices on 7 adjacent days
int
price[6] = { 10, 4, 5, 90, 120, 80 };
// in span array , span of each day will be stored.
int
span[6] = { 0 };
int
i;
// stack 's' will store stock values of each
// day. stack 'temp' is temporary stack
STACK s, temp;
// setting top pointer to -1.
initialiseStack(&s);
initialiseStack(&temp);
// count basically signifies span of
// particular day.
int
count = 1;
// since first day span is 1 only.
span[0] = 1;
push(price[0], &s);
// calculate span of remaining days.
for
(i = 1; i < 6; i++) {
// count will be span of that particular day.
count = 1;
// if current day stock is larger than previous day
// span, then it will be popped out into temp stack.
// popping will be carried out till span gets over
// and count will be incremented .
while
(!IsStackempty(s)
&& s.entry[s.top] <= price[i]) {
push(pop(&s), &temp);
count++;
}
// now, one by one all stocks from temp will be
// popped and pushed back to s.
while
(!IsStackempty(temp)) {
push(pop(&temp), &s);
}
// pushing current stock
push(price[i], &s);
// appending span of that particular
// day into output array.
span[i] = count;
}
// printing the output.
for
(i = 0; i < 6; i++)
printf
(
"%d "
, span[i]);
}
C++
// C++ program for brute force method
// to calculate stock span values
#include <bits/stdc++.h>
using
namespace
std;
vector <
int
> calculateSpan(
int
arr[],
int
n)
{
// Your code here
stack<
int
> s;
vector<
int
> ans;
for
(
int
i=0;i<n;i++)
{
while
(!s.empty() and arr[s.top()] <= arr[i])
s.pop();
if
(s.empty())
ans.push_back(i+1);
else
{
int
top = s.top();
ans.push_back(i-top);
}
s.push(i);
}
return
ans;
}
// A utility function to print elements of array
void
printArray(vector<
int
> arr)
{
for
(
int
i = 0; i < arr.size(); i++)
cout << arr[i] <<
" "
;
}
// Driver code
int
main()
{
int
price[] = { 10, 4, 5, 90, 120, 80 };
int
n =
sizeof
(price) /
sizeof
(price[0]);
int
S[n];
vector<
int
> arr = calculateSpan(price, n);
printArray(arr);
return
0;
}
// This is code is contributed by Arpit Jain
Java
// Java program for brute force method
// to calculate stock span values
import
java.util.ArrayList;
import
java.util.ArrayDeque;
import
java.util.Deque;
class
GFG {
static
ArrayList<Integer> calculateSpan(
int
arr[],
int
n)
{
// Your code here
Deque<Integer> s =
new
ArrayDeque<Integer>();
ArrayList<Integer> ans =
new
ArrayList<Integer>();
for
(
int
i =
0
; i < n; i++) {
while
(!s.isEmpty() && arr[s.peek()] <= arr[i])
s.pop();
if
(s.isEmpty())
ans.add(i +
1
);
else
{
int
top = s.peek();
ans.add(i - top);
}
s.push(i);
}
return
ans;
}
// A utility function to print elements of array
static
void
printArray(ArrayList<Integer> arr)
{
for
(
int
i =
0
; i < arr.size(); i++)
System.out.print(arr.get(i) +
" "
);
}
// Driver code
public
static
void
main(String args[])
{
int
price[] = {
10
,
4
,
5
,
90
,
120
,
80
};
int
n = price.length;
ArrayList<Integer> arr = calculateSpan(price, n);
printArray(arr);
}
}
// This is code is contributed by Lovely Jain
Python3
# Python3 program for a linear time
# solution for stock span problem
# using stack
def
calculateSpan(a, n):
s
=
[]
ans
=
[]
for
i
in
range
(
0
,n):
while
(s !
=
[]
and
a[s[
-
1
]] <
=
a[i]):
s.pop()
if
(s
=
=
[]):
ans.append(i
+
1
)
else
:
top
=
s[
-
1
]
ans.append(i
-
top)
s.append(i)
return
ans
# A utility function to print elements
# of array
def
printArray(arr, n):
for
i
in
range
(n):
(arr[i], end
=
' '
)
()
# Driver code
price
=
[
10
,
4
,
5
,
90
,
120
,
80
]
n
=
len
(price)
ans
=
calculateSpan(price, n)
# Print the calculated span values
printArray(ans, n)
# This code is contributed by Arpit Jain
Output1 1 2 4 5 1which was the same expected output.
Time Complexity: O(N), where N is the size of the array.
Space Complexity: O(N), where N is the size of the array.My Personal Notes arrow_drop_upRecommended ArticlesPage :Article Contributed By :Improved By :
- Sam007
- Tathagat Jha
- Pranav Devarakonda
- andrew1234
- princiraj1992
- 29AjayKumar
- rathbhupendra
- 415856255
- PrateekGupta10
- 20ajinky
- vaibhavrabadiya117
- akshaysingh98088
- lokeshpotta20
- aryanshukla1313
- gobial
- simmytarika5
- kk9826225
- sumitgumber28
- Rajput-Ji
- sagartomar9927
- harshitmcmxcv
- harendrakumar123
- 111arpit1
- jainlovely450
- rohitmishra051000
- RishabhPrabhu