The Lazy Caterer’s Problem

Given an integer n, denoting the number of cuts that can be made on a pancake, find the maximum number of pieces that can be formed by making n cuts.
Examples :

Input :  n = 1
Output : 2
With 1 cut we can divide the pancake in 2 pieces

Input :  2
Output : 4
With 2 cuts we can divide the pancake in 4 pieces

Input : 3
Output : 7
We can divide the pancake in 7 parts with 3 cuts

Input : 50
Output : 1276

pizza-cut

Let f(n) denote the maximum number of pieces
that can be obtained by making n cuts.
Trivially,
f(0) = 1                                 
As there'd be only 1 piece without any cut.

Similarly,
f(1) = 2

Proceeding in similar fashion we can deduce 
the recursive nature of the function.
The function can be represented recursively as :
f(n) = n + f(n-1)

Hence a simple solution based on the above 
formula can run in O(n). 

We can optimize above formula.



We now know ,
f(n) = n + f(n-1) 

Expanding f(n-1) and so on we have ,
f(n) = n + n-1 + n-2 + ...... + 1 + f(0)

which gives,
f(n) = (n*(n+1))/2 + 1

Hence with this optimization, we can answer all the queries in O(1).

Below is the implementation of above idea :

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// A C++ program to find the solution to
// The Lazy Caterer's Problem
#include <iostream>
using namespace std;
  
// This function receives an integer n
// and returns the maximum number of
// pieces that can be made form pancake
// using n cuts
int findPieces(int n)
{
    // Use the formula
    return (n * ( n + 1)) / 2 + 1;
}
  
// Driver Code
int main()
{
    cout << findPieces(1) << endl;
    cout << findPieces(2) << endl;
    cout << findPieces(3) << endl;
    cout << findPieces(50) << endl;
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to find the solution to
// The Lazy Caterer's Problem
import java.io.*;
  
class GFG 
{
    // This function returns the maximum 
    // number of pieces that can be made
    //  form pancake using n cuts
    static int findPieces(int n)
    {
        // Use the formula
        return (n * (n + 1)) / 2 + 1;
    }
      
    // Driver program to test above function
    public static void main (String[] args) 
    {
        System.out.println(findPieces(1));
        System.out.println(findPieces(2));
        System.out.println(findPieces(3));
        System.out.println(findPieces(50));
    }
}
  
// This code is contributed by Pramod Kumar

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# A Python 3 program to 
# find the solution to
# The Lazy Caterer's Problem
  
# This function receives an 
# integer n and returns the 
# maximum number of pieces 
# that can be made form 
# pancake using n cuts
def findPieces( n ):
  
    # Use the formula
    return (n * ( n + 1)) // 2 + 1
  
# Driver Code
print(findPieces(1))
print(findPieces(2))
print(findPieces(3))
print(findPieces(50))
  
# This code is contributed
# by ihritik

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to find the solution 
// to The Lazy Caterer's Problem
using System;
  
class GFG 
{
    // This function returns the maximum 
    // number of pieces that can be made
    // form pancake using n cuts
    static int findPieces(int n)
    {
        // Use the formula
        return (n * (n + 1)) / 2 + 1;
    }
      
    // Driver code
    public static void Main () 
    {
        Console.WriteLine(findPieces(1));
        Console.WriteLine(findPieces(2));
        Console.WriteLine(findPieces(3));
        Console.Write(findPieces(50));
    }
}
  
// This code is contributed by Nitin Mittal.

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// A php program to find 
// the solution to The 
// Lazy Caterer's Problem
  
// This function receives 
// an integer n and returns 
// the maximum number of
// pieces that can be made 
// form pancake using n cuts
function findPieces($n)
{
    // Use the formula
    return ($n * ( $n + 1)) / 2 + 1;
}
  
// Driver Code
echo findPieces(1) , "\n" ;
echo findPieces(2) , "\n" ;
echo findPieces(3) , "\n" ;
echo findPieces(50) ,"\n";
  
// This code is contributed
// by nitin mittal. 
?>

chevron_right



Output :

2
4
7
1276

References : oeis.org

This article is contributed by Ashutosh Kumar .If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



My Personal Notes arrow_drop_up

Improved By : nitin mittal, ihritik



Article Tags :
Practice Tags :


1


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.