# The biggest possible circle that can be inscribed in a rectangle

• Last Updated : 18 Sep, 2022

Given a rectangle of length l & breadth b, we have to find the largest circle that can be inscribed in the rectangle.
Examples:

```Input  : l = 4, b = 8
Output : 12.56

Input  : l = 16 b = 6
Output : 28.26``` From the figure, we can see, the biggest circle that could be inscribed in the rectangle will have radius always equal to the half of the shorter side of the rectangle. So from the figure,

radius, r = b/2
Area, A = π * (r^2)

## C++

 `// C++ Program to find the biggest circle``// which can be inscribed  within the rectangle``#include ``using` `namespace` `std;` `// Function to find the area``// of the biggest circle``float` `circlearea(``float` `l, ``float` `b)``{` `    ``// the length and breadth cannot be negative``    ``if` `(l < 0 || b < 0)``        ``return` `-1;` `    ``// area of the circle``    ``if` `(l < b)``        ``return` `3.14 * ``pow``(l / 2, 2);``    ``else``        ``return` `3.14 * ``pow``(b / 2, 2);``}` `// Driver code``int` `main()``{``    ``float` `l = 4, b = 8;``    ``cout << circlearea(l, b) << endl;``    ``return` `0;``}`

## Java

 `// Java Program to find the``// biggest circle which can be``// inscribed within the rectangle` `class` `GFG``{` `// Function to find the area``// of the biggest circle``static` `float` `circlearea(``float` `l,``                        ``float` `b)``{` `// the length and breadth``// cannot be negative``if` `(l < ``0` `|| b < ``0``)``    ``return` `-``1``;` `// area of the circle``if` `(l < b)``    ``return` `(``float``)(``3.14` `* Math.pow(l / ``2``, ``2``));``else``    ``return` `(``float``)(``3.14` `* Math.pow(b / ``2``, ``2``));``}` `// Driver code``public` `static` `void` `main(String[] args)``{``    ``float` `l = ``4``, b = ``8``;``    ``System.out.println(circlearea(l, b));``}``}` `// This code is contributed``// by ChitraNayal`

## Python 3

 `# Python 3 Program to find the``# biggest circle which can be``# inscribed within the rectangle` `# Function to find the area``# of the biggest circle``def` `circlearea(l, b):` `    ``# the length and breadth``    ``# cannot be negative``    ``if` `(l < ``0` `or` `b < ``0``):``        ``return` `-``1` `    ``# area of the circle``    ``if` `(l < b):``        ``return` `3.14` `*` `pow``(l ``/``/` `2``, ``2``)``    ``else``:``        ``return` `3.14` `*` `pow``(b ``/``/` `2``, ``2``)` `# Driver code``if` `__name__ ``=``=` `"__main__"``:``    ``l ``=` `4``    ``b ``=` `8``    ``print``(circlearea(l, b))` `# This code is contributed``# by ChitraNayal`

## C#

 `// C# Program to find the``// biggest circle which can be``// inscribed within the rectangle``using` `System;` `class` `GFG``{` `// Function to find the area``// of the biggest circle``static` `float` `circlearea(``float` `l,``                        ``float` `b)``{` `// the length and breadth``// cannot be negative``if` `(l < 0 || b < 0)``    ``return` `-1;` `// area of the circle``if` `(l < b)``    ``return` `(``float``)(3.14 * Math.Pow(l / 2, 2));``else``    ``return` `(``float``)(3.14 * Math.Pow(b / 2, 2));``}` `// Driver code``public` `static` `void` `Main()``{``    ``float` `l = 4, b = 8;``    ``Console.Write(circlearea(l, b));``}``}` `// This code is contributed``// by ChitraNayal`

## PHP

 ``

## Javascript

 ``

Output:

`12.56`

Time complexity: O(1) as it is doing constant operations

Auxiliary Space: O(1)

My Personal Notes arrow_drop_up