# Test Case Generation | Set 3 (Unweighted and Weighted Trees)

Generating Random Unweighted Trees

• Since this is a tree,  the test data generation plan is such that no cycle gets formed.
• The number of edges is one less than the number of vertices
• For each RUN we first print the number of vertices – NUM first in a new separate line and the next NUM-1 lines are of the form (a b) where a is the parent of b

 `// A C++ Program to generate test cases for ` `// an unweighted tree ` `#include ` `using` `namespace` `std; ` ` `  `// Define the number of runs for the test data ` `// generated ` `#define RUN 5 ` ` `  `// Define the maximum number of nodes of the tree ` `#define MAXNODE 20 ` ` `  `class` `Tree ` `{ ` `    ``int` `V;    ``// No. of vertices ` ` `  `    ``// Pointer to an array containing adjacency listss ` `    ``list<``int``> *adj; ` ` `  `    ``// used by isCyclic() ` `    ``bool` `isCyclicUtil(``int` `v, ``bool` `visited[], ``bool` `*rs); ` `public``: ` `    ``Tree(``int` `V);   ``// Constructor ` `    ``void` `addEdge(``int` `v, ``int` `w);   ``// adds an edge ` `    ``void` `removeEdge(``int` `v, ``int` `w);   ``// removes an edge ` ` `  `    ``// returns true if there is a cycle in this graph ` `    ``bool` `isCyclic(); ` `}; ` ` `  `// Constructor ` `Tree::Tree(``int` `V) ` `{ ` `    ``this``->V = V; ` `    ``adj = ``new` `list<``int``>[V]; ` `} ` ` `  `void` `Tree::addEdge(``int` `v, ``int` `w) ` `{ ` `    ``adj[v].push_back(w); ``// Add w to v’s list. ` `} ` ` `  `void` `Tree::removeEdge(``int` `v, ``int` `w) ` `{ ` `    ``list<``int``>::iterator it; ` `    ``for` `(it=adj[v].begin(); it!=adj[v].end(); it++) ` `    ``{ ` `        ``if` `(*it == w) ` `        ``{ ` `            ``adj[v].erase(it); ` `            ``break``; ` `        ``} ` `    ``} ` `    ``return``; ` `} ` ` `  `// This function is a variation of DFSUytil() in ` `// https://www.geeksforgeeks.org/depth-first-search-or-dfs-for-a-graph/ ` `bool` `Tree::isCyclicUtil(``int` `v, ``bool` `visited[], ``bool` `*recStack) ` `{ ` `    ``if` `(visited[v] == ``false``) ` `    ``{ ` `        ``// Mark the current node as visited and part of ` `        ``// recursion stack ` `        ``visited[v] = ``true``; ` `        ``recStack[v] = ``true``; ` ` `  `        ``// Recur for all the vertices adjacent to this vertex ` `        ``list<``int``>::iterator i; ` `        ``for` `(i = adj[v].begin(); i != adj[v].end(); ++i) ` `        ``{ ` `            ``if` `(!visited[*i] && isCyclicUtil(*i, visited, recStack)) ` `                ``return` `true``; ` `            ``else` `if` `(recStack[*i]) ` `                ``return` `true``; ` `        ``} ` ` `  `    ``} ` `    ``recStack[v] = ``false``;  ``// remove the vertex from recursion stack ` `    ``return` `false``; ` `} ` ` `  `// Returns true if the graph contains a cycle, else false. ` `// This function is a variation of DFS() in ` `// https://www.geeksforgeeks.org/depth-first-search-or-dfs-for-a-graph/ ` `bool` `Tree::isCyclic() ` `{ ` `    ``// Mark all the vertices as not visited and not part of recursion ` `    ``// stack ` `    ``bool` `*visited = ``new` `bool``[V]; ` `    ``bool` `*recStack = ``new` `bool``[V]; ` `    ``for``(``int` `i = 0; i < V; i++) ` `    ``{ ` `        ``visited[i] = ``false``; ` `        ``recStack[i] = ``false``; ` `    ``} ` ` `  `    ``// Call the recursive helper function to detect cycle in different ` `    ``// DFS trees ` `    ``for` `(``int` `i = 0; i < V; i++) ` `        ``if` `(isCyclicUtil(i, visited, recStack)) ` `            ``return` `true``; ` ` `  `    ``return` `false``; ` `} ` ` `  `int` `main() ` `{ ` `    ``set> container; ` `    ``set>::iterator it; ` ` `  `    ``// Uncomment the below line to store ` `    ``// the test data in a file ` `    ``// freopen ("Test_Cases_Unweighted_Tree.in", "w", stdout); ` ` `  `    ``//For random values every time ` `    ``srand``(``time``(NULL)); ` ` `  `    ``int` `NUM;    ``// Number of Vertices/Nodes ` ` `  `    ``for` `(``int` `i=1; i<=RUN; i++) ` `    ``{ ` `        ``NUM = 1 + ``rand``() % MAXNODE; ` ` `  `        ``// First print the number of vertices/nodes ` `        ``printf``(``"%d\n"``, NUM); ` `        ``Tree t(NUM); ` `        ``// Then print the edges of the form (a b) ` `        ``// where 'a' is parent of 'b' ` `        ``for` `(``int` `j=1; j<=NUM-1; j++) ` `        ``{ ` `            ``int` `a = ``rand``() % NUM; ` `            ``int` `b = ``rand``() % NUM; ` `            ``pair<``int``, ``int``> p = make_pair(a, b); ` ` `  `            ``t.addEdge(a, b); ` ` `  `            ``// Search for a random "new" edge everytime ` `            ``while` `(container.find(p) != container.end() ` `                    ``|| t.isCyclic() == ``true``) ` `            ``{ ` `                ``t.removeEdge(a, b); ` ` `  `                ``a = ``rand``() % NUM; ` `                ``b = ``rand``() % NUM; ` `                ``p = make_pair(a, b); ` `                ``t.addEdge(a, b); ` `            ``} ` `            ``container.insert(p); ` `        ``} ` ` `  `        ``for` `(it=container.begin(); it!=container.end(); ++it) ` `            ``printf``(``"%d %d\n"``, it->first, it->second); ` ` `  `        ``container.clear(); ` `        ``printf``(``"\n"``); ` `    ``} ` ` `  `    ``// Uncomment the below line to store ` `    ``// the test data in a file ` `    ``// fclose(stdout); ` `    ``return``(0); ` `}`

Generating Random Weighted Trees

• Since this is a tree,  the test data generation plan is such that no cycle gets formed.
• The number of edges is one less than the number of vertices
• For each RUN we first print the number of vertices – NUM first in a new separate line and the next NUM-1 lines are of the form (a b wt) where a is the parent of b and the edge has a weight of wt

 `// A C++ Program to generate test cases for ` `// an unweighted tree ` `#include ` `using` `namespace` `std; ` ` `  `// Define the number of runs for the test data ` `// generated ` `#define RUN 5 ` ` `  `// Define the maximum number of nodes of the tree ` `#define MAXNODE 20 ` ` `  `// Define the maximum weight of edges ` `#define MAXWEIGHT 200 ` ` `  `class` `Tree ` `{ ` `    ``int` `V;    ``// No. of vertices ` ` `  `    ``// Pointer to an array containing adjacency lists ` `    ``list<``int``> *adj; ` ` `  `    ``// used by isCyclic() ` `    ``bool` `isCyclicUtil(``int` `v, ``bool` `visited[], ``bool` `*rs); ` `public``: ` `    ``Tree(``int` `V);   ``// Constructor ` `    ``void` `addEdge(``int` `v, ``int` `w);   ``// adds an edge ` `    ``void` `removeEdge(``int` `v, ``int` `w); ``// removes an edge ` ` `  `    ``// returns true if there is a cycle in this graph ` `    ``bool` `isCyclic(); ` `}; ` ` `  `Tree::Tree(``int` `V) ` `{ ` `    ``this``->V = V; ` `    ``adj = ``new` `list<``int``>[V]; ` `} ` ` `  `void` `Tree::addEdge(``int` `v, ``int` `w) ` `{ ` `    ``adj[v].push_back(w); ``// Add w to v’s list. ` `} ` ` `  `void` `Tree::removeEdge(``int` `v, ``int` `w) ` `{ ` `    ``list<``int``>::iterator it; ` `    ``for` `(it=adj[v].begin(); it!=adj[v].end(); it++) ` `    ``{ ` `        ``if` `(*it == w) ` `        ``{ ` `            ``adj[v].erase(it); ` `            ``break``; ` `        ``} ` `    ``} ` `    ``return``; ` `} ` ` `  `// This function is a variation of DFSUytil() in ` `// https://www.geeksforgeeks.org/depth-first-search-or-dfs-for-a-graph/ ` `bool` `Tree::isCyclicUtil(``int` `v, ``bool` `visited[], ``bool` `*recStack) ` `{ ` `    ``if``(visited[v] == ``false``) ` `    ``{ ` `        ``// Mark the current node as visited and part of ` `        ``// recursion stack ` `        ``visited[v] = ``true``; ` `        ``recStack[v] = ``true``; ` ` `  `        ``// Recur for all the vertices adjacent to this vertex ` `        ``list<``int``>::iterator i; ` `        ``for` `(i = adj[v].begin(); i != adj[v].end(); ++i) ` `        ``{ ` `            ``if` `(!visited[*i] && isCyclicUtil(*i, visited, ` `                                            ``recStack)) ` `                ``return` `true``; ` `            ``else` `if` `(recStack[*i]) ` `                ``return` `true``; ` `        ``} ` ` `  `    ``} ` ` `  `     ``// remove the vertex from recursion stack ` `    ``recStack[v] = ``false``; ` ` `  `    ``return` `false``; ` `} ` ` `  `// Returns true if the graph contains a cycle, else false. ` `// This function is a variation of DFS() in ` `// https://www.geeksforgeeks.org/depth-first-search-or-dfs-for-a-graph/ ` `bool` `Tree::isCyclic() ` `{ ` `    ``// Mark all the vertices as not visited and not part ` `    ``// of recursion stack ` `    ``bool` `*visited = ``new` `bool``[V]; ` `    ``bool` `*recStack = ``new` `bool``[V]; ` `    ``for` `(``int` `i = 0; i < V; i++) ` `    ``{ ` `        ``visited[i] = ``false``; ` `        ``recStack[i] = ``false``; ` `    ``} ` ` `  `    ``// Call the recursive helper function to detect cycle ` `    ``// in different DFS trees ` `    ``for` `(``int` `i = 0; i < V; i++) ` `        ``if` `(isCyclicUtil(i, visited, recStack)) ` `            ``return` `true``; ` ` `  `    ``return` `false``; ` `} ` ` `  `int` `main() ` `{ ` `    ``set > container; ` `    ``set >::iterator it; ` ` `  `    ``// Uncomment the below line to store ` `    ``// the test data in a file ` `    ``// freopen ("Test_Cases_Weighted_Tree1.in", "w", stdout); ` ` `  `    ``//For random values every time ` `    ``srand``(``time``(NULL)); ` ` `  `    ``int` `NUM;    ``// Number of Vertices/Nodes ` ` `  `    ``for` `(``int` `i=1; i<=RUN; i++) ` `    ``{ ` `        ``NUM = 1 + ``rand``() % MAXNODE; ` ` `  `        ``// First print the number of vertices/nodes ` `        ``printf``(``"%d\n"``, NUM); ` `        ``Tree t(NUM); ` ` `  `        ``// Then print the edges of the form (a b wt) ` `        ``// where 'a' is parent of 'b' and the edge has ` `        ``// a weight of 'wt' ` `        ``for` `(``int` `j=1; j<=NUM-1; j++) ` `        ``{ ` `            ``int` `a = ``rand``() % NUM; ` `            ``int` `b = ``rand``() % NUM; ` `            ``pair<``int``, ``int``> p = make_pair(a, b); ` ` `  `            ``t.addEdge(a, b); ` ` `  `            ``// Search for a random "new" edge everytime ` `            ``while` `(container.find(p) != container.end() ` `                    ``|| t.isCyclic() == ``true``) ` `            ``{ ` `                ``t.removeEdge(a, b); ` ` `  `                ``a = ``rand``() % NUM; ` `                ``b = ``rand``() % NUM; ` `                ``p = make_pair(a, b); ` `                ``t.addEdge(a, b); ` `            ``} ` `            ``container.insert(p); ` `        ``} ` ` `  `        ``for` `(it=container.begin(); it!=container.end(); ++it) ` `        ``{ ` `            ``int` `wt = 1 + ``rand``() % MAXWEIGHT; ` `            ``printf``(``"%d %d %d\n"``, it->first, it->second, wt); ` `        ``} ` ` `  `        ``container.clear(); ` `        ``printf``(``"\n"``); ` `    ``} ` ` `  `    ``// Uncomment the below line to store ` `    ``// the test data in a file ` `    ``// fclose(stdout); ` `    ``return``(0); ` `} `

This article is contributed by Rachit Belwariar. If you like GeeksforGeeks and would like to contribute, you can also write an article and mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above

My Personal Notes arrow_drop_up

Article Tags :

Be the First to upvote.

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.