Skip to content
Related Articles

Related Articles

Improve Article
tensorflow.math.special.expint() function in Python
  • Last Updated : 22 Jun, 2020

TensorFlow is open-source Python library designed by Google to develop Machine Learning models and deep learning  neural networks.

expint() function

expint() is used to compute element wise Exponential integral of x. It is defines as the integral of exp(t) / t from -inf to x, with the domain of definition all positive real numbers.

Sytnax: tensorflow.math.special.expint( x, name)

Parameter:

  • x: It’s a Tensor or Sparse Tensor. Allowed dtypes are float32 and float64.
  • name(optional): It defines name for the operation.

Returns: It returns a Tensor of same dtype as x.



Example 1:

Python3




# importing the library
import tensorflow as tf
  
# Initializing the input tensor
a = tf.constant([ [-5, -7],[ 2, 0]], dtype=tf.float64)
  
# Printing the input tensor
print('a: ', a)
  
# Calculating result
res = tf.math.special.expint(a)
  
# Printing the result
print('Result: ', res)

Output:

a:  tf.Tensor(
[[-5. -7.]
 [ 2.  0.]], shape=(2, 2), dtype=float64)
Result:  tf.Tensor(
[[       nan        nan]
 [4.95423436       -inf]], shape=(2, 2), dtype=float64)

Example 2:

Python3




# importing the library
import tensorflow as tf
  
# Initializing the input tensor
a = tf.constant([1, 2, 3, 4, 5], dtype=tf.float64)
  
# Printing the input tensor
print('a: ', a)
  
# Calculating result
res = tf.math.special.expint(a)
  
# Printing the result
print('Result: ', res)

Output:

a:  tf.Tensor([1. 2. 3. 4. 5.], shape=(5,), dtype=float64)
Result:  tf.Tensor([ 1.89511782  4.95423436  9.93383257 19.63087447 40.18527536], shape=(5,), dtype=float64)

 Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.  

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning – Basic Level Course




My Personal Notes arrow_drop_up
Recommended Articles
Page :