Skip to content
Related Articles

Related Articles

Improve Article

tensorflow.math.special.dawsn() function in Python

  • Last Updated : 22 Jul, 2021

TensorFlow is open-source python library designed by Google to develop Machine Learning models and deep learning  neural networks.

dawsn() function

dawsn() is used to compute element wise Dawson’s integral of x. It is defines as exp(-x**2) times the integral of exp(t**2) from 0 to x, with the domain of definition all real numbers.

 Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.  

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning - Basic Level Course

Syntax: tensorflow.math.special.dawsn( x, name)



Parameter:

  • x: It’s a Tensor or Sparse Tensor. Allowed dtypes are float32 and float64.
  • name(optional): It defines name for the operation.

Returns: It returns a Tensor of same dtype as x.

Example 1:

Python3




# importing the library
import tensorflow as tf
 
# Initializing the input tensor
a = tf.constant([ [-5, -7],[ 2, 0]], dtype=tf.float64)
 
# Printing the input tensor
print('a: ', a)
 
# Calculating result
res = tf.math.special.dawsn(a)
 
# Printing the result
print('Result: ', res)

Output:

a:  tf.Tensor(
[[-5. -7.]
 [ 2.  0.]], shape=(2, 2), dtype=float64)
Result:  tf.Tensor(
[[-0.10213407 -0.07218097]
 [ 0.30134039  0.        ]], shape=(2, 2), dtype=float64)

Example 2:

Python3




# importing the library
import tensorflow as tf
 
# Initializing the input tensor
a = tf.constant([1, 2, 3, 4, 5], dtype=tf.float64)
 
# Printing the input tensor
print('a: ', a)
 
# Calculating result
res = tf.math.special.dawsn(a)
 
# Printing the result
print('Result: ', res)

Output:

a:  tf.Tensor([1. 2. 3. 4. 5.], shape=(5,), dtype=float64) 
Result:  tf.Tensor([0.53807951 0.30134039 0.17827103 0.129348   0.10213407], shape=(5,), dtype=float64) 
 




My Personal Notes arrow_drop_up
Recommended Articles
Page :