Tensorflow.js tf.train.adadelta() Function
Tensorflow.js is an open-source library developed by Google for running machine learning models and deep learning neural networks in the browser or node environment.
The tf.train.adadelta() function us used to create a tf.AdadeltaOptimizer that uses adadelta algorithm. The adadelta algorithm is a extension of gradient decent optimization algorithm. It is used to optimise neural networks.
Syntax:
tf.train.adadelta(learningRate)
Parameters:
- learningRate: It specifies the learning rate which will be used by adadelta gradient descent algorithm.
- rho: It specifies the learning rate decay over each update.
- epsilon: It specifies a constant epsilon which is used to improve grad update’s condition. Optional
Return value: It returns a tf.adadeltaOptimizer
Example 1: Fit a function f=(a*x+y) using adadelta optimizer, by learning coefficients a and b.
Javascript
// Importing tensorflow import * as tf from "@tensorflow/tfjs" const xs = tf.tensor1d([0, 1, 2, 3]); const ys = tf.tensor1d([1.1, 5.9, 16.8, 33.9]); // Choosing variable coefficients const a = tf.scalar(Math.random()).variable(); const b = tf.scalar(Math.random()).variable(); // Defining function f = (a*x + b) const f = x => a.mul(x).add(b); const loss = (pred, label) => pred.sub(label).square().mean(); const learningRate = 0.01; // Creating optimizer const optimizer = tf.train.adadelta(learningRate); // Train the model. for (let i = 0; i < 10; i++) { optimizer.minimize(() => loss(f(xs), ys)); } // Make predictions. console.log( `a: ${a.dataSync()}, b: ${b.dataSync()}}`); const preds = f(xs).dataSync(); preds.forEach((pred, i) => { console.log(`x: ${i}, pred: ${pred}`); }); |
Output:
a: 5.39164924621582, b: 1.8858184814453125} x: 0, pred: 1.8858184814453125 x: 1, pred: 7.277467727661133 x: 2, pred: 12.669116973876953 x: 3, pred: 18.060766220092773
Example 2: Fit a quadratic equation using adadelta optimizer, by learning coefficients a, b and c. Optimizer configuration is as follows:
- learningRate = 0.01
- rho = 0.2
- epsilon = 0.5
Javascript
// Importing tensorflow import * as tf from "@tensorflow/tfjs" const xs = tf.tensor1d([0, 1, 2, 3]); const ys = tf.tensor1d([1.1, 5.9, 16.8, 33.9]); const a = tf.scalar(Math.random()).variable(); const b = tf.scalar(Math.random()).variable(); const c = tf.scalar(Math.random()).variable(); const f = x => a.mul(x.square()).add(b.mul(x)).add(c); const loss = (pred, label) => pred.sub(label).square().mean(); // Setting configurations for our optimizer const learningRate = 0.01; const rho = 0.2; const epsilon = 0.5; // Creating the optimizer const optimizer = tf.train.adadelta(learningRate, rho, epsilon); // Train the model. for (let i = 0; i < 10; i++) { optimizer.minimize(() => loss(f(xs), ys)); } // Make predictions. console.log( `a: ${a.dataSync()}, b: ${b.dataSync()}, c: ${c.dataSync()}`); const preds = f(xs).dataSync(); preds.forEach((pred, i) => { console.log(`x: ${i}, pred: ${pred}`); }); |
Output:
a: 3.1871466636657715, b: 1.5096971988677979, c:0.8317463397979736 x: 0, pred: 0.8317463397979736 x: 1, pred: 5.528590202331543 x: 2, pred: 16.599727630615234 x: 3, pred: 34.04515838623047
Reference: https://js.tensorflow.org/api/1.0.0/#train.adadelta
Please Login to comment...