Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Tensorflow.js tf.layers.elu() Function

  • Last Updated : 22 Jun, 2021

Tensorflow.js is an open-source library developed by Google for running machine learning models and deep learning neural networks in the browser or node environment. It also helps the developers to develop ML models in JavaScript language and can use ML directly in the browser or Node.js.

The tf.layers.elu() function is abbreviated as Exponential Linear Unit. It is defined as: 

F(a) = alpha * (exp(a) – 1.) for a < 0, f(a) = a for a >= 0.

Syntax:

tf.layers.elu(arguments)

 

Parameters:

  • inputShape : It is an optional parameter which is used to create the input layer, and it takes values like number and null.
  • batchInputShape : It is an optional parameter which is used to create the input layer before the main layer, and it takes values like number and null.
  • batchSize : Its is an optional parameter used to make batchInputShape, and, and it accepts only numbers.
  • dtype : It is an optional parameter, and it stands for data type. By default, it has ‘float32’ and also supports other values like ‘int32’, ‘bool’ etc.
  • name: It is an optional parameter and is used to define the name of the layer, and it accepts strings.
  • trainable : It is an optional parameter that determines the provided input layers are updated or not. It accepts boolean values.
  • weights : It possesses the starting weights of the layer. It is also an optional parameter.
  • inputDType : It is an optional parameter used for input data type. Like dtype it also supports all its values.

Return Value: It returns ELU.

Example 1:

Javascript




// Importing the tensorflow.js library
import * as tf from "@tensorflow/tfjs"
  
// Initializing the tensor
const geek= tf.tensor1d([11, 12, 23, 74]);
  
// Reshaping tensor
const geek1=tf.reshape(geek,[2,2]);
  
// Creating ELU of poolSize 2*2
const elu=tf.layers.elu({poolSize:[2,2]});
  
//Applying ELU on geek1 tensor
const result = elu.apply(geek1);
  
//Printing the result tensor
result.print();

Output:

Tensor
    [[11, 12],
     [23, 74]]

Example 2:

Javascript




// Importing the tensorflow.js library
import * as tf from "@tensorflow/tfjs"
  
// Reshaping tensor
const geek1=tf.reshape(tf.tensor1d([55, 63, 17, 28]),[2,2]);
  
// Applying elu on geek1 tensor
tf.layers.elu(
  {
    poolSize:[2,2]
  }
).apply(
  geek1).print();

Output:

Tensor
    [[55, 63],
     [17, 28]]

Reference: https://js.tensorflow.org/api/3.6.0/#layers.elu


My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!