Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Tensorflow.js tf.initializers.truncatedNormal() Function

  • Last Updated : 17 Sep, 2021

Tensorflow.js is an open-source library developed by Google for running machine learning models and deep learning neural networks in the browser or node environment. It also helps the developers to develop ML models in JavaScript language and can use ML directly in the browser or in Node.js.

The tf.initializers.truncatedNormal() function produces random values initialized to a truncated normal distribution.

Hey geek! The constant emerging technologies in the world of web development always keeps the excitement for this subject through the roof. But before you tackle the big projects, we suggest you start by learning the basics. Kickstart your web development journey by learning JS concepts with our JavaScript Course. Now at it's lowest price ever!

Syntax:

tf.initializers.truncatedNormal(arguments)

Parameters: It takes an object as arguments that contain the any of  key values listed below:



  • mean: It is the mean of the random values to be generated.
  • stddev: It is the standard deviation of the random values to be generated.
  • seed: It is the random number generator seed.

Returns value: It returns tf.initializers.Initializer

Example 1:

Javascript




// Importing the tensorflow.js library
import * as tf from "@tensorflow/tfjs"
 
// Initializing the .initializers.truncatedNormal()
// function
let geek = tf.initializers.truncatedNormal(13)
 
// Printing gain value
console.log(geek);
 
// Printing individual gain value
console.log('\nIndividual values:\n');
console.log(geek.DEFAULT_MEAN);
console.log(geek.DEFAULT_STDDEV);
console.log(geek.mean);
console.log(geek.stddev);

Output:

{
  "DEFAULT_MEAN": 0,
  "DEFAULT_STDDEV": 0.05,
  "mean": 0,
  "stddev": 0.05
}

Individual values:

0
0.05
0
0.05

Example 2: 

Javascript




// Importing the tensorflow.Js library
import * as tf from "@tensorflow/tfjs
 
// Defining the input value
const inputValue = tf.input({shape:[4]});
 
// Initializing tf.initializers.truncatedNormal()
// function
const funcValue = tf.initializers.truncatedNormal(11)
 
// Creating dense layer 1
const dense_layer_1 = tf.layers.dense({
    units: 4,
    activation: 'relu',
    kernelInitialize: funcValue
});
 
// Creating dense layer 2
const dense_layer_2 = tf.layers.dense({
    units: 6,
    activation: 'softmax'
});
 
// Output
const outputValue = dense_layer_2.apply(
  dense_layer_1.apply(inputValue)
);
 
// Creation the model.
const model = tf.model(
  {
    inputs: inputValue,
    outputs: outputValue
  });
 
// Predicting the output.
model.predict(tf.ones([2, 4])).print();

Output:

Tensor
    [[0.1830122, 0.1198884, 0.1611279, 
      0.2659391, 0.1296039, 0.1404286],
     [0.1830122, 0.1198884, 0.1611279, 
      0.2659391, 0.1296039, 0.1404286]]

Reference: https://js.tensorflow.org/api/3.6.0/#initializers.truncatedNormal




My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!