# Taxicab Numbers

The nth Taxicab number Taxicab(n), also called the n-th Hardy-Ramanujan number, is defined as the smallest number that can be expressed as a sum of two positive cube numbers in n distinct ways.
The most famous taxicab number is 1729 = Taxicab(2) = (1 ^ 3) + (12 ^ 3) = (9 ^ 3) + (10 ^ 3).

Given a number N, print first N Taxicab(2) numbers.

Examples:

```Input : N = 1
Output : 1729
Explanation : 1729 = (1 ^ 3) + (12 ^ 3)
= (9 ^ 3) + (10 ^ 3)

Input : N = 2
Output : 1729 4104
Explanation : 1729 = (1 ^ 3) + (12 ^ 3)
= (9 ^ 3) + (10 ^ 3)
4104 = (16 ^ 3) + (2 ^ 3)
= (15 ^ 3) + (9 ^ 3)
```

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

We try all numbers one by one and check if it is a taxicab number. To check if a number is Taxicab, we use two nested loops :
In outer loop, we calculate cube root of a number.
In inner loop, we check if there is a cube-root which yield the result.

## C++

 `// C++ implementation to print first N Taxicab(2)  ` `// numbers : ` `#include ` `using` `namespace` `std; ` ` `  `void` `printTaxicab2(``int` `N) ` `{ ` `    ``// Starting from 1, check every number if ` `    ``// it is Taxicab until count reaches N. ` `    ``int` `i = 1, count = 0; ` `    ``while` `(count < N)  ` `    ``{ ` `       ``int` `int_count = 0; ` ` `  `       ``// Try all possible pairs (j, k) whose cube  ` `       ``// sums can be i. ` `       ``for` `(``int` `j = 1; j <= ``pow``(i, 1.0/3); j++)  ` `          ``for` `(``int` `k = j + 1; k <= ``pow``(i, 1.0/3); k++)  ` `              ``if` `(j*j*j + k*k*k == i) ` `                  ``int_count++; ` `        `  `       ``// Taxicab(2) found ` `       ``if` `(int_count == 2)  ` `       ``{ ` `          ``count++; ` `          ``cout << count << ``" "` `<< i << endl;   ` `       ``} ` ` `  `       ``i++; ` `    ``} ` `} ` ` `  `// Driver code ` `int` `main()  ` `{ ` `    ``int` `N = 5; ` `    ``printTaxicab2(N); ` `    ``return` `0; ` `} `

## Java

 `// JAVA Code for Taxicab Numbers ` `import` `java.util.*; ` ` `  `class` `GFG { ` `     `  `    ``public` `static` `void` `printTaxicab2(``int` `N) ` `    ``{ ` `        ``// Starting from 1, check every number if ` `        ``// it is Taxicab until count reaches N. ` `        ``int` `i = ``1``, count = ``0``; ` `        ``while` `(count < N)  ` `        ``{ ` `           ``int` `int_count = ``0``; ` `      `  `           ``// Try all possible pairs (j, k) whose   ` `           ``// cube sums can be i. ` `           ``for` `(``int` `j = ``1``; j <= Math.pow(i, ``1.0``/``3``); j++)  ` `              ``for` `(``int` `k = j + ``1``; k <= Math.pow(i, ``1.0``/``3``); ` `                                                   ``k++)  ` `                  ``if` `(j * j * j + k * k * k == i) ` `                      ``int_count++; ` `             `  `           ``// Taxicab(2) found ` `           ``if` `(int_count == ``2``)  ` `           ``{ ` `              ``count++; ` `              ``System.out.println(count + ``" "` `+ i);   ` `           ``} ` `      `  `           ``i++; ` `        ``} ` `    ``} ` `     `  `    ``/* Driver program to test above function */` `    ``public` `static` `void` `main(String[] args)  ` `    ``{ ` `        ``int` `N = ``5``; ` `        ``printTaxicab2(N); ` `         `  `    ``} ` `} ` `   `  `// This code is contributed by Arnav Kr. Mandal. `

## Python3

 `# Python3 implementation to print ` `# first N Taxicab(2) numbers  ` ` `  `def` `printTaxicab2(N): ` ` `  `    ``# Starting from 1, check every number if ` `    ``# it is Taxicab until count reaches N. ` `    ``i, count ``=` `1``, ``0` `    ``while` `(count < N):  ` `     `  `        ``int_count ``=` `0` ` `  `        ``# Try all possible pairs (j, k)  ` `        ``# whose cube sums can be i. ` `        ``for` `j ``in` `range``(``1``, ``int``(``pow``(i, ``1.0` `/` `3``)) ``+` `1``):  ` `             `  `            ``for` `k ``in` `range``(j ``+` `1``, ``int``(``pow``(i, ``1.0` `/` `3``)) ``+` `1``):  ` `                ``if` `(j ``*` `j ``*` `j ``+` `k ``*` `k ``*` `k ``=``=` `i): ` `                    ``int_count ``+``=` `1` `         `  `        ``# Taxicab(2) found ` `        ``if` `(int_count ``=``=` `2``):  ` `         `  `            ``count ``+``=` `1` `            ``print``(count, ``" "``, i)  ` ` `  `        ``i ``+``=` `1` `     `  `# Driver code ` `N ``=` `5` `printTaxicab2(N) ` ` `  `# This code is contributed by Anant Agarwal. `

## C#

 `// C# Code for Taxicab Numbers ` `using` `System; ` ` `  `class` `GFG { ` `     `  `    ``public` `static` `void` `printTaxicab2(``int` `N) ` `    ``{ ` `        ``// Starting from 1, check every number if ` `        ``// it is Taxicab until count reaches N. ` `        ``int` `i = 1, count = 0; ` `        ``while` `(count < N)  ` `        ``{ ` `            ``int` `int_count = 0; ` `         `  `            ``// Try all possible pairs (j, k) whose  ` `            ``// cube sums can be i. ` `            ``for` `(``int` `j = 1; j <= Math.Pow(i, 1.0/3); j++)  ` `                ``for` `(``int` `k = j + 1; k <= Math.Pow(i, 1.0/3); ` `                                                    ``k++)  ` `                    ``if` `(j * j * j + k * k * k == i) ` `                        ``int_count++; ` `                 `  `            ``// Taxicab(2) found ` `            ``if` `(int_count == 2)  ` `            ``{ ` `                ``count++; ` `                ``Console.WriteLine(count + ``" "` `+ i);  ` `            ``} ` `         `  `            ``i++; ` `        ``} ` `    ``} ` `     `  `    ``// Driver program  ` `    ``public` `static` `void` `Main()  ` `    ``{ ` `        ``int` `N = 5; ` `        ``printTaxicab2(N); ` `         `  `    ``} ` `} ` ` `  `// This code is contributed by vt_m. `

## PHP

 ` `

Output:

```1 1729
2 4104
3 13832
4 20683
5 32832
```

This article is contributed by Rohit Thapliyal. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.