Open In App
Related Articles

System Design – Horizontal and Vertical Scaling

Improve Article
Save Article
Like Article

If you’re a developer then building a website and serving it to the users can be the most pleasurable thing for you. After all, you worked hard and you tried to create something valuable for the users. When you see a huge number of users have started using your services and day after day the numbers are growing you really feel amazing and you start thinking about taking your services to the next level. You feel good to see the growing numbers but sooner you realize your machine or server can not handle large amounts of requests anymore and it may stop responding anytime. Now you need to find a solution to scale your application for the enormous number of requests. How would you solve this problem??, what approach you will follow to scale your application??

Horizontal scaling and vertical scaling are two different approaches to scaling a system, both of which can be used to improve the performance and capacity of the system.

Horizontal scaling involves adding more nodes or instances to the system, which can help to distribute the load and improve the overall performance of the system. For example, in a web application, horizontal scaling could involve adding more web servers to handle the increasing traffic. Horizontal scaling is particularly effective for systems that are designed to be distributed and can be easily partitioned, such as databases or content delivery networks.


It does not matter what company you’re working for or what kind of website you are building, most of the time you will face this kind of scenario, and being a developer it would be your responsibility to find the solution to this problem as well. You will have to expand your app’s accessibility, power, and presence. You can solve this problem by adding extra hardware or by upgrading the current system configuration which is called scalability. In this blog, we will talk about scaling an application which is also an important concept of a system design round of interviews. If your aim is to get into a big tech giant company then you should know this concept very well for this round. 

Options for scaling your database can be grouped into two major categories… 

  • Vertical Scaling
  • Horizontal Scaling


1. Vertical Scaling

In simple terms upgrading the capacity of a single machine or moving to a new machine with more power is called vertical scaling. You can add more power to your machine by adding better processors, increasing RAM, or other power-increasing adjustments. Vertical scaling can be easily achieved by switching from small to bigger machines but remember that this involves downtime. You can enhance the capability of your server without manipulating your code. 

  • This approach is also referred to as the ‘scale-up‘ approach.
  • It doesn’t require any partitioning of data and all the traffic resides on a single node with more capacity.
  • Easy implementation.
  • Less administrative effort as you need to manage just one system.
  • Application compatibility is maintained.
  • Mostly used in small and mid-sized companies.
  • MySQL and Amazon RDS is a good examples of vertical scaling.


  • Limited Scaling.
  • Limited potential for improving network I/O or disk I/O.
  • Replacing the server will require downtime in this approach.
  • Greater risk of outages and hardware failures.
  • Finite scope of upgradeability in the future.
  • Implementation cost is expensive.

2. Horizontal Scaling

This approach is the best solution for projects which have requirements for high availability or failover. In horizontal scaling, we enhance the performance of the server by adding more machines to the network, sharing the processing and memory workload across multiple devices. We simply add more instances of the server to the existing pool of servers and distribute the load among these servers. In this approach, there is no need to change the capacity of the server or replace the server. Also, like vertical scaling, there is no downtime while adding more servers to the network. Most organizations choose this approach because it includes increasing I/O concurrency, reducing the load on existing nodes, and increasing disk capacity. 

  • This approach is also referred to as the ‘scale-out’ approach.
  • Horizontal scalability can be achieved with the help of a distributed file system, clustering, and load–balancing.
  • Traffic can be managed effectively.
  • Easier to run fault tolerance.
  • Easy to upgrade.
  • Instant and continuous availability.
  • Easy to size and resize properly to your needs.
  • Implementation cost is less expensive compared to scaling up.
  • Google with its Gmail and YouTube, Yahoo, Facebook, eBay, Amazon, etc. are heavily utilizing horizontal scaling.
  • Cassandra and MongoDB are good examples of horizontal scaling.


  • Complicated architectural design
  • High licensing fees
  • High utility costs such (cooling and electricity)
  • The requirement of extra networking equipment such as routers and switches.

A Short Comparison

We have understood the meaning of both the major categories of scaling an application. We also have discussed some pros and cons of each one of them. Let’s do a quick comparison of these two approaches based on these pros and cons.

Horizontal Scaling

Vertical Scaling

Load balancing requiredLoad balancing not required
Resilient to system failureSingle point of failure
Utilizes Network CallsInterprocess communication
Data inconsistencyData consistent
Scales wellHardware limit
  • Load Balancing: Horizontal scaling requires load balancing to distribute or spread the traffic among several machines. In the vertical machine, there is just one machine to handle the load so it doesn’t require a load balancer.
  • Failure Resilience: Horizontal scaling is more resistant to system failure. If one of the machines fails you can redirect the request to another machine and the application won’t face downtime. This is not in the case of vertical scaling, it has a single machine so it will have a single point of failure. This simply means in horizontal scaling you can achieve availability but in vertical scaling, DB is still running on a single box so it doesn’t improve availability.
  • Machine Communication: Horizontal scaling requires network communication, or calls, between machines. Network calls are slow and more to prone failure. This is not in the case of vertical scaling, Vertical scaling works on inter-process communication that is quite fast.
  • Data Consistency: Data is inconsistent in horizontal scaling because different machines handle different requests which may lead to their data becoming out of sync which must be addressed. On the other side, vertical machines have just one single machine where all the requests will be redirected, so there is no issue of inconsistency of data in vertical scaling.
  • Limitations: Depends on budget, space, or requirement you can add as many servers as you want in horizontal scaling and scales your application as much as you want. This is not in the case of vertical scaling. There is a finite limit to the capacity achievable with vertical scaling. Scaling beyond that capacity results in downtime and comes with an upper limit. So a single machine can only be improved upon until it reaches the current limits of computing.

Which One is Right For an Application?

After a fair understanding of both options, we can see that both of them have some pros and cons. There will be always some tradeoffs so it may be a little bit trickier for developers to decide which one is better for an application. You need to make a smart decision here. Firstly, you should identify your requirements, business goals, and areas where we would like to add value. Then make important design decisions by questioning ourselves, developing prototypes, and refining the design. Certain factors are important to consider for a better understanding of your business goal or requirement. Some of them are… 

  • Performance requirements or performance characteristics of an application.
  • System throughput
  • System response time
  • System availability requirement
  • Is the system fault-tolerant? If so, what is the degree of it?
  • Is the design reliable?
  • What level of consistency do we care about?
  • What’s the scalability goal of the application (you might have some short-term or immediate one’s goal, but what is going to happen in the long run ?)

All the above factors will help you to identify the business goal and requirements for your application. Whatever option you choose, it should ideally be able to answer the above and many other similar questions. You should have a clear understanding of the differences between these 2 scaling approaches. Identify what suits your requirements, and see if the application really fits the model you choose. If your goal is to accomplish superior performance, you can use either vertical scaling or horizontal scaling, or both in a cloud environment. 

If you’re curious to know what big tech real companies use when scaling their systems, then the answer is both. Most of the time in big organizations engineers take some good qualities of vertical scaling and some good qualities of horizontal scaling. They follow the hybrid approach of combining the speed and consistency of vertical scaling, with the resilience and infinite scalability of horizontal scaling. 

Simply throwing in new hardware and adding more nodes or machines is not the way to start. You should observe the requirements of your application carefully before making a decision. If the requirements can be met by increasing the capacity or tuning characteristics of a single machine then go with the vertical scaling (especially for start-ups) but once the users start growing rapidly and you need to replace the system quite often, go with horizontal scaling or the combination of both.

Horizontal and vertical scaling are two strategies used to improve the performance, capacity, and scalability of a system.

Horizontal scaling involves adding more nodes or instances to the system, increasing the number of servers that are available to handle incoming requests. This can help to distribute the load and improve the overall performance of the system, as incoming requests can be spread across multiple servers instead of being handled by a single server.

Advantages of horizontal scaling:

Increased capacity: More nodes or instances can handle a larger number of incoming requests.
Improved performance: Load can be balanced across multiple nodes or instances, reducing the likelihood of any one server becoming overwhelmed.
Increased fault tolerance: If one node fails, incoming requests can be redirected to another node, reducing the risk of downtime.
Disadvantages of horizontal scaling:

Increased complexity: Managing multiple nodes or instances can be more complex than managing a single node.
Increased cost: Adding more nodes or instances will typically increase the cost of the system.
Vertical scaling, on the other hand, involves upgrading the hardware of existing servers, such as increasing the amount of memory, CPU, or storage, to improve their performance and capacity.

Advantages of vertical scaling:

Increased capacity: Upgrading the hardware of a server can improve its performance and increase its capacity to handle incoming requests.
Easier management: Vertical scaling typically involves upgrading a single node, which can be less complex than managing multiple nodes.

Disadvantages of vertical scaling:

Limited scalability: Vertical scaling is limited by the physical constraints of the hardware, whereas horizontal scaling can be easily expanded by adding more nodes.
Increased cost: Upgrading the hardware of a server can be more expensive than adding more nodes.
Single point of failure: All incoming requests are still directed to a single server, which increases the risk of downtime if the server fails.
In summary, the choice between horizontal and vertical scaling will depend on the specific requirements of the system, such as the expected load, the desired level of fault tolerance, and the cost constraints. Both approaches can be used together to achieve a more balanced and scalable system, for example, by vertically scaling the database servers and horizontally scaling the web servers.

Reference books:

Designing Data-Intensive Applications: The Big Ideas Behind Reliable, Scalable, and Maintainable Systems by Martin Kleppmann
Scalability Rules: 50 Principles for Scaling Web Sites by Martin L. Abbott and Michael T. Fisher
High Performance Web Sites: Essential Knowledge for Front-End Engineers by Steve Souders.

Last Updated : 16 Feb, 2023
Like Article
Save Article
Similar Reads