Related Articles

Related Articles

sympy.stats.PowerFunction() in Python
  • Last Updated : 08 Jun, 2020

With the help of sympy.stats.PowerFunction() method, we can get the continuous random variable which represents the Power Function distribution.

Syntax : sympy.stats.PowerFunction(name, alpha, a, b)
Where, a, b and alpha are real number.

Return : Return the continuous random variable.

Example #1 :
In this example we can see that by using sympy.stats.PowerFunction() method, we are able to get the continuous random variable representing power function distribution by using this method.



filter_none

edit
close

play_arrow

link
brightness_4
code

# Import sympy and PowerFunction
from sympy.stats import PowerFunction, density
from sympy import Symbol, pprint
  
z = Symbol("z")
alpha = Symbol("alpha", positive = True)
a = Symbol("a", positive = True)
b = Symbol("b", positive = True)
  
# Using sympy.stats.PowerFunction() method
X = PowerFunction("x", alpha, a, b)
gfg = density(X)(z)
  
print(gfg)

chevron_right


Output :

(-2*a + 2*z)/(-a + b)**2

Example #2 :

filter_none

edit
close

play_arrow

link
brightness_4
code

# Import sympy and PowerFunction
from sympy.stats import PowerFunction, density, variance
from sympy import Symbol, pprint
  
z = Symbol("z")
alpha = 2
a = 0
b = 1
  
# Using sympy.stats.PowerFunction() method
X = PowerFunction("x", alpha, a, b)
gfg = density(X)(z)
  
pprint(variance(gfg))

chevron_right


Output :

1/18

Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course.




My Personal Notes arrow_drop_up
Recommended Articles
Page :