# sympy.stats.Logistic() in python

• Last Updated : 05 Jun, 2020

With the help of `sympy.stats.Logistic()` method, we can get the continuous random variable which represents the logistic distribution. Syntax : `sympy.stats.Logistic(name, mu, s)`
Where, mu and s are real number and mu, s > 0.
Return : Return the continuous random variable.

Example #1 :
In this example we can see that by using `sympy.stats.Logistic()` method, we are able to get the continuous random variable representing logistic distribution by using this method.

 `# Import sympy and Logistic``from` `sympy.stats ``import` `Logistic, density``from` `sympy ``import` `Symbol, pprint`` ` `z ``=` `Symbol(``"z"``)``mu ``=` `Symbol(``"mu"``, positive ``=` `True``)``s ``=` `Symbol(``"s"``, positive ``=` `True``)`` ` `# Using sympy.stats.Logistic() method``X ``=` `Logistic(``"x"``, mu, s)``gfg ``=` `density(X)(z)`` ` `pprint(gfg)`

Output :

mu – z
——
s
e
—————-
2
/ mu – z \
| —— |
| s |
s*\e + 1/

Example #2 :

 `# Import sympy and Logistic``from` `sympy.stats ``import` `Logistic, density``from` `sympy ``import` `Symbol, pprint`` ` `z ``=` `0.3``mu ``=` `5``s ``=` `1.3`` ` `# Using sympy.stats.Logistic() method``X ``=` `Logistic(``"x"``, mu, s)``gfg ``=` `density(X)(z)`` ` `pprint(gfg)`

Output :

0.0196269669241977

My Personal Notes arrow_drop_up