Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Sympy stats.JointRV() in Python

  • Last Updated : 08 Jun, 2020

With the help of sympy.stats.JointRV() method, we can get the continuous joint random variable which represents the Von Mises distribution.

Syntax : sympy.stats.JointRV(name, pdf)
Return : Return the continuous joint random variable.

Example #1 :
In this example we can see that by using sympy.stats.JointRV() method, we are able to get the continuous joint random variable representing JointRV distribution by using this method.




# Import sympy and JointRV
from sympy.stats import JointRV, density
from sympy import Symbol, pprint
  
z = Symbol("z")
pdf = 2 * pi * z
  
# Using sympy.stats.JointRV() method
X = JointRV("x", pdf)
gfg = density(X)
  
pprint(gfg)

Output :

JointDistributionHandmade(Lambda((), 2*pi*z), FiniteSet(()))

Example #2 :




# Import sympy and JointRV
from sympy.stats import JointRV, density
from sympy import Symbol, pprint
  
z = 3
pdf = 2 * pi * z
  
# Using sympy.stats.JointRV() method
X = JointRV("x", pdf)
gfg = density(X)
  
pprint(gfg)

Output :

6*pi

My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!