Skip to content
Related Articles
sympy.stats.Binomial() function in Python
• Last Updated : 18 Aug, 2020

With the help of sympy.stats.Binomial() method, we can create a Finite Random Variable representing a binomial distribution.

A binomial distribution is the probability of a SUCCESS or FAILURE outcome in an experiment or survey that is repeated multiple times.

```Syntax: sympy.stats.Binomial(name, n, p, succ=1, fail=0)

Parameters:
name: distribution name
n: Positive Integer, represents number of trials
p: Rational Number between 0 and 1, represents probability of success
succ: Represents event of success, by default is 1
fail: Represents event of failure, by default is 0
```

Example #1 :

## Python3

 `# Import sympy, Binomial, density``from` `sympy.stats ``import` `Binomial, density`` ` `# Using sympy.stats.Binomial() method``X ``=` `Binomial(``'X'``, ``4``, ``1` `/` `3``)``binDist ``=` `density(X).``dict`` ` `print``(binDist)`

Output :

```{0: 16/81, 1: 32/81, 2: 8/27, 3: 8/81, 4: 1/81}

```

Example #2 :

## Python3

 `# Import sympy, Binomial, density``from` `sympy.stats ``import` `Binomial, density`` ` `# Using sympy.stats.Binomial() method``X ``=` `Binomial(``'X'``, ``4``, ``1` `/` `3``, ``1` `/` `2``)``binDist ``=` `density(X).``dict`` ` `print``(binDist)`

Output :

```{0: 16/81, 1/2: 32/81, 2: 1/81, 3/2: 8/81, 1: 8/27}

```

Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning – Basic Level Course

My Personal Notes arrow_drop_up