# sympy.integrals.transforms.inverse_sine_transform() in python

• Last Updated : 10 Jul, 2020

With the help of inverse_sine_transform() method, we can compute the inverse sine transformation and return the unevaluated function.

Inverse sine transformation

Syntax : inverse_sine_transform(F, k, x, **hints)

Return : Return the unevaluated function.

Example #1 :

In this example we can see that by using inverse_sine_transform() method, we are able to compute the inverse sine transformation and return the enevaluated function.

## Python3

 `# import inverse_sine_transform``from` `sympy ``import` `inverse_sine_transform, exp, sqrt, gamma, pi``from` `sympy.abc ``import` `x, k, a`` ` `# Using inverse_sine_transform() method``gfg ``=` `inverse_sine_transform(``2``*``*``((``1``-``2` `*` `a)``/``2``)``*``k``*``*``(a ``-` `1``)``*``gamma(``-``a ``/` `2` `+` `1``)``/``gamma((a ``+` `1``)``/``2``), k, x)`` ` `print``(gfg)`

Output :

x**(-a)

Example #2 :

## Python3

 `# import inverse_sine_transform``from` `sympy ``import` `inverse_sine_transform, exp, sqrt, gamma, pi``from` `sympy.abc ``import` `x, k, a`` ` `# Using inverse_sine_transform() method``gfg ``=` `inverse_sine_transform(``2``*``*``((``1``-``2` `*` `a)``/``2``)``*``k``*``*``(a ``-` `1``)``*``gamma(``-``a ``/` `2` `+` `1``)``/``gamma((a ``+` `1``)``/``2``), k, ``3``)`` ` `print``(gfg)`

Output :

(1/3)**a

My Personal Notes arrow_drop_up