sympy.integrals.rationaltools.ratint_logpart() in python

With the help of ratint_logpart() method, we can integrate the indefinite rational function by implementing Lazard Rioboo Trager algorithm by using this method and returns the integrated polynomial.

Syntax : ratint_logpart(f, g, x, t=None)

Return : Return the integrated function.

Example #1 :

In this example we can see that by using ratint_logpart() method, we are able to compute the indefinite rational integration using Lazard Rioboo Trager algorithm.



Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# import ratint_logpart
from sympy.integrals.rationaltools import ratint_logpart
from sympy.abc import x
from sympy import Poly
  
# Using ratint_logpart() method
gfg = ratint_logpart(Poly(1, x, domain='ZZ'), 
                     Poly(x*2 + x + 1, x, domain='ZZ'), x)
  
print(gfg)

chevron_right


Output :

[(Poly(3*x + 1, x, domain=’ZZ’), Poly(-3*_t + 1, _t, domain=’ZZ’))]

Example #2 :

Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# import ratint_logpart
from sympy.integrals.rationaltools import ratint_logpart
from sympy.abc import x, y
from sympy import Poly
  
# Using ratint_logpart() method
gfg = ratint_logpart(Poly(10, y, domain='ZZ'), 
               Poly(y**2 - 3*y - 2, y, domain='ZZ'), y)
  
print(gfg)

chevron_right


Output :

[(Poly(y – 17*_t/20 – 3/2, y, domain=’QQ[_t]’), Poly(-17*_t**2 + 100, _t, domain=’ZZ’))]

My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.