Skip to content
Related Articles
Get the best out of our app
GeeksforGeeks App
Open App
geeksforgeeks
Browser
Continue

Related Articles

Swap upper and lower triangular halves of a given Matrix

Improve Article
Save Article
Like Article
Improve Article
Save Article
Like Article

Given a square matrix mat[][] of dimensions N * N, the task is to print the matrix that can be obtained after swapping the laterally inverted images of the upper and lower triangular halves of a given matrix.

Consider the matrix mat[][] = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}
The lateral image of the lower triangular half of the matrix

4
7 8

The lateral image of the upper triangular half of the matrix

 6
 3 2

Therefore, following rearrangement of the matrix needs to be performed

1  2  3    1  8  7
4  5  6 to 6  5  4
7  8  9    3  2  9

Examples:

Input: mat[][] = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}
Output:
1  8  7
6  5  4
3  2  9
Explanation:

1  2  3    6  5  4
1  8  7 to 7  8  9
4  5  6    3  2  9

Input: mat[][] = {{1, 2}, {4, 5}}
Output:
1 4
2 5

Approach: Follow the steps below to solve the problem:

  • Initialize an array of vectors, upDiagonal, and lowDiagonal, to store the elements of the matrix elements from the lower and upper triangular halves respectively.
  • Traverse the given matrix using variables i and j for rows and column respectively and perform the following steps:
    • If the current element is on the principal diagonal, then continue from this iteration.
    • Otherwise, if the current element is present in the upper triangular half, then add this element to upDiagonal at index abs(i – j).
    • Otherwise, add the current element to lowDiagonal at index abs(i – j).
  • Now, again traverse the matrix and replace any element present in the upper-half with the element from the end of the lower-half and vice versa.
  • After completing the above steps, print the resultant matrix.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to swap laterally inverted
// images of upper and lower triangular
// halves of a given matrix
void ReverseSwap(vector<vector<int> >& mat, int n)
{
    // Store the matrix elements from
    // upper & lower triangular halves
    vector<int> lowerEle[n];
    vector<int> upperEle[n];
 
    int index;
 
    // Traverse the matrix mat[][]
    for (int i = 0; i < n; i++) {
 
        for (int j = 0; j < n; j++) {
 
            // Find the index
            index = abs(i - j);
 
            // If current element lies
            // on the principal diagonal
            if (i == j) {
                continue;
            }
 
            // If current element lies
            // below the principal diagonal
            else if (j < i) {
                lowerEle[index].push_back(
                    mat[i][j]);
            }
 
            // If current element lies
            // above the principal diagonal
            else {
                upperEle[index].push_back(
                    mat[i][j]);
            }
        }
    }
 
    // Traverse again to swap values
    for (int i = 0; i < n; i++) {
 
        for (int j = 0; j < n; j++) {
 
            // Find the index
            index = abs(i - j);
 
            // Principal diagonal
            if (i == j) {
                continue;
            }
 
            // Below main diagonal
            else if (j < i) {
 
                mat[i][j] = upperEle[index].back();
                upperEle[index].pop_back();
            }
 
            // Above main diagonal
            else {
                mat[i][j] = lowerEle[index].back();
                lowerEle[index].pop_back();
            }
        }
    }
 
    // Traverse the matrix and print
    for (int i = 0; i < n; i++) {
 
        for (int j = 0; j < n; j++) {
 
            cout << mat[i][j] << " ";
        }
        cout << endl;
    }
}
 
// Driver Code
int main()
{
    // Given Matrix mat[][]
    vector<vector<int> > mat = { { 1, 2 },
                                 { 4, 5 } };
 
    int N = mat.size();
 
    // Swap the upper and lower
    // triangular halves
    ReverseSwap(mat, N);
 
    return 0;
}

Java




// Java program for the above approach
import java.io.*;
 
class GFG{
 
// Function to swap laterally inverted
// images of upper and lower triangular
// halves of a given matrix
static void ReverseSwap(int[][] mat, int n)
{
     
    // Store the matrix elements from
    // upper & lower triangular halves
    int[] lowerEle = new int[n];
    int[] upperEle = new int[n];
 
    int index;
 
    // Traverse the matrix mat[][]
    for(int i = 0; i < n; i++)
    {
        for(int j = 0; j < n; j++)
        {
             
            // Find the index
            index = Math.abs(i - j);
 
            // If current element lies
            // on the principal diagonal
            if (i == j)
            {
                continue;
            }
 
            // If current element lies
            // below the principal diagonal
            else if (j < i)
            {
                lowerEle[index] = mat[i][j];
            }
 
            // If current element lies
            // above the principal diagonal
            else
            {
                upperEle[index] = mat[i][j];
            }
        }
    }
 
    // Traverse again to swap values
    for(int i = 0; i < n; i++)
    {
        for(int j = 0; j < n; j++)
        {
             
            // Find the index
            index = Math.abs(i - j);
 
            // Principal diagonal
            if (i == j)
            {
                continue;
            }
 
            // Below main diagonal
            else if (j < i)
            {
                mat[i][j] = upperEle[index];
            }
 
            // Above main diagonal
            else
            {
                mat[i][j] = lowerEle[index--];
            }
        }
    }
 
    // Traverse the matrix and print
    for(int i = 0; i < n; i++)
    {
        for(int j = 0; j < n; j++)
        {
            System.out.print(mat[i][j] + " ");
        }
        System.out.println();
    }
}
 
// Driver Code
public static void main(String[] args)
{
     
    // Given Matrix mat[][]
    int[][] mat = new int[][]{ { 1, 2 }, { 4, 5 } };
 
    int N = mat.length;
 
    // Swap the upper and lower
    // triangular halves
    ReverseSwap(mat, N);
}
}
 
// This code is contributed by Dharanendra L V

Python3




# Python3 program for the above approach
 
# Function to swap laterally inverted
# images of upper and lower triangular
# halves of a given matrix
def ReverseSwap(mat, n):
     
    # Store the matrix elements from
    # upper & lower triangular halves
    lowerEle = [[] for i in range(n)]
    upperEle = [[] for i in range(n)]
 
    index = 0
 
    # Traverse the matrix mat[][]
    for i in range(n):
        for j in range(n):
             
            # Find the index
            index = abs(i - j)
 
            # If current element lies
            # on the principal diagonal
            if (i == j):
                continue
             
            # If current element lies
            # below the principal diagonal
            elif (j < i):
                lowerEle[index].append(mat[i][j])
 
            # If current element lies
            # above the principal diagonal
            else:
                upperEle[index].append(mat[i][j])
 
    # Traverse again to swap values
    for i in range(n):
        for j in range(n):
 
            # Find the index
            index = abs(i - j)
 
            # Principal diagonal
            if (i == j):
                continue
 
            # Below main diagonal
            elif (j < i):
                mat[i][j] = upperEle[index][-1]
                del upperEle[index][-1]
                 
            # Above main diagonal
            else:
                mat[i][j] = lowerEle[index][-1]
                del lowerEle[index][-1]
 
    # Traverse the matrix and pr
    for i in range(n):
        for j in range(n):
            print (mat[i][j], end = " ")
             
        print()
 
# Driver Code
if __name__ == '__main__':
     
    # Given Matrix mat[][]
    mat = [ [ 1, 2 ],
            [ 4, 5 ] ]
 
    N = len(mat)
 
    # Swap the upper and lower
    # triangular halves
    ReverseSwap(mat, N)
 
# This code is contributed by mohit kumar 29

C#




// C# program for the above approach
using System;
 
class GFG{
 
// Function to swap laterally inverted
// images of upper and lower triangular
// halves of a given matrix
static void ReverseSwap(int[,] mat, int n)
{
     
    // Store the matrix elements from
    // upper & lower triangular halves
    int[] lowerEle = new int[n];
    int[] upperEle = new int[n];
 
    int index;
 
    // Traverse the matrix mat[][]
    for(int i = 0; i < n; i++)
    {
        for(int j = 0; j < n; j++)
        {
             
            // Find the index
            index = Math.Abs(i - j);
 
            // If current element lies
            // on the principal diagonal
            if (i == j)
            {
                continue;
            }
 
            // If current element lies
            // below the principal diagonal
            else if (j < i)
            {
                lowerEle[index] = mat[i, j];
            }
 
            // If current element lies
            // above the principal diagonal
            else
            {
                upperEle[index] = mat[i, j];
            }
        }
    }
 
    // Traverse again to swap values
    for(int i = 0; i < n; i++)
    {
        for(int j = 0; j < n; j++)
        {
             
            // Find the index
            index = Math.Abs(i - j);
 
            // Principal diagonal
            if (i == j)
            {
                continue;
            }
 
            // Below main diagonal
            else if (j < i)
            {
                mat[i, j] = upperEle[index];
            }
 
            // Above main diagonal
            else
            {
                mat[i, j] = lowerEle[index--];
            }
        }
    }
 
    // Traverse the matrix and print
    for(int i = 0; i < n; i++)
    {
        for(int j = 0; j < n; j++)
        {
            Console.Write(mat[i, j] + " ");
        }
        Console.WriteLine();
    }
}
 
// Driver Code
static public void Main()
{
     
    // Given Matrix mat[][]
    int[,] mat = new int[,]{ { 1, 2 }, { 4, 5 } };
 
    int N = mat.GetLength(0);
 
    // Swap the upper and lower
    // triangular halves
    ReverseSwap(mat, N);
}
}
 
// This code is contributed by Dharanendra L V

Javascript




<script>
 
// JavaScript program for the above approach
 
// Function to swap laterally inverted
// images of upper and lower triangular
// halves of a given matrix
function  ReverseSwap(mat,n)
{
    // Store the matrix elements from
    // upper & lower triangular halves
    let lowerEle = new Array(n);
    let upperEle = new Array(n);
  
    let index;
  
    // Traverse the matrix mat[][]
    for(let i = 0; i < n; i++)
    {
        for(let j = 0; j < n; j++)
        {
              
            // Find the index
            index = Math.abs(i - j);
  
            // If current element lies
            // on the principal diagonal
            if (i == j)
            {
                continue;
            }
  
            // If current element lies
            // below the principal diagonal
            else if (j < i)
            {
                lowerEle[index] = mat[i][j];
            }
  
            // If current element lies
            // above the principal diagonal
            else
            {
                upperEle[index] = mat[i][j];
            }
        }
    }
  
    // Traverse again to swap values
    for(let i = 0; i < n; i++)
    {
        for(let j = 0; j < n; j++)
        {
              
            // Find the index
            index = Math.abs(i - j);
  
            // Principal diagonal
            if (i == j)
            {
                continue;
            }
  
            // Below main diagonal
            else if (j < i)
            {
                mat[i][j] = upperEle[index];
            }
  
            // Above main diagonal
            else
            {
                mat[i][j] = lowerEle[index--];
            }
        }
    }
  
    // Traverse the matrix and print
    for(let i = 0; i < n; i++)
    {
        for(let j = 0; j < n; j++)
        {
            document.write(mat[i][j] + " ");
        }
        document.write("<br>");
    }
}
 
// Driver Code
 
let mat=[[1, 2],[ 4, 5 ]];
let N = mat.length;
// Swap the upper and lower
// triangular halves
ReverseSwap(mat, N);
 
 
// This code is contributed by patel2127
 
</script>

Output: 

1 4 
2 5

 

Time Complexity: O(N2)
Auxiliary Space: O(N2)

Optimised Approach: Without space

We will traverse only the upper triangular half and swap elements of the upper triangular half with the lower triangular half. But how we can access elements of the lower triangular half if we are only traversing the upper triangular half?

Because if the index of any element in the upper triangular half is “i,j” then “j,i”will be the index of the corresponding element in the lower triangular half.

Code-

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to swap laterally inverted
// images of upper and lower triangular
// halves of a given matrix
void swapUpperToLower(vector<vector<int> > mat,int n)
{
    // Loop for swap the elements of matrix.
    for (int i = 0; i < n; i++) {
        for (int j = i + 1; j < n; j++) {
            int temp = mat[i][j];
            mat[i][j] = mat[j][i];
            mat[j][i] = temp;
        }
    }
     
    // Loop for print the matrix elements.
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < n; j++)
            cout << mat[i][j] << " ";
        cout << endl;
    }
}
 
// Driver function to run the program
int main()
{// Given Matrix mat[][]
    vector<vector<int> > mat = { { 1, 2 },
                                 { 4, 5 } };
 
    int n = mat.size();
 
    // Swap the upper and lower
    // triangular halves
 
    swapUpperToLower(mat,n);
    return 0;
}

Output-

1 4 
2 5 

Time Complexity: O(N2)
Auxiliary Space: O(1)

 


My Personal Notes arrow_drop_up
Last Updated : 28 Mar, 2023
Like Article
Save Article
Similar Reads
Related Tutorials