Summing the sum series
Defined a function that calculates the twice of sum of first N natural numbers as sum(N). Your task is to modify the function to sumX(N, M, K) that calculates sum( K + sum( K + sum( K + …sum(K + N)…))), continuing for M terms. For a given N, M and K calculate the value of sumX(N, M, K).
Note: Since the answer can be very large, print the answer in modulo 10^9 + 7.
Examples:
Input: N = 1, M = 2, K = 3
Output: 552
For M = 2
sum(3 + sum(3 + 1)) = sum(3 + 20) = 552.
Input: N = 3, M =3, K = 2
Output: 1120422
For M = 3
sum(2 + sum(2 + sum(2 + 3))) = sum(2 + sum(2 + 30)) = sum(2 + 1056) = 1120422.
Approach:
- Calculate value of sum(N) using the formula N*(N + 1).
- Run a loop M times, each time adding K to the previous answer and applying sum(prev_ans + K), modulo 10^9 + 7 each time.
- Print the value of sumX(N, M, K) in the end.
Below is the implementation of the above approach:
C++
// C++ program to calculate the // terms of summing of sum series #include <iostream> using namespace std; # define MOD 1000000007 // Function to calculate // twice of sum of first N natural numbers long sum( long N){ long val = N * (N+1); val = val % MOD; return val; } // Function to calculate the // terms of summing of sum series int sumX( int N, int M, int K){ for ( int i = 0; i < M; i++) { N = ( int )sum(K + N); } N = N % MOD; return N; } // Driver Code int main() { int N = 1, M = 2, K = 3; cout << sumX(N, M, K) << endl; return 0; } // This code is contributed by Rituraj Jain |
Java
// Java program to calculate the // terms of summing of sum series import java.io.*; import java.util.*; import java.lang.*; class GFG { static int MOD = 1000000007 ; // Function to calculate // twice of sum of first N natural numbers static long sum( long N) { long val = N * (N + 1 ); // taking modulo 10 ^ 9 + 7 val = val % MOD; return val; } // Function to calculate the // terms of summing of sum series static int sumX( int N, int M, int K) { for ( int i = 0 ; i < M; i++) { N = ( int )sum(K + N); } N = N % MOD; return N; } // Driver code public static void main(String args[]) { int N = 1 , M = 2 , K = 3 ; System.out.println(sumX(N, M, K)); } } |
Python3
# Python3 program to calculate the # terms of summing of sum series MOD = 1000000007 # Function to calculate # twice of sum of first N natural numbers def Sum (N): val = N * (N + 1 ) # taking modulo 10 ^ 9 + 7 val = val % MOD return val # Function to calculate the # terms of summing of sum series def sumX(N, M, K): for i in range (M): N = int ( Sum (K + N)) N = N % MOD return N if __name__ = = "__main__" : N, M, K = 1 , 2 , 3 print (sumX(N, M, K)) # This code is contributed by Rituraj Jain |
C#
// C# program to calculate the // terms of summing of sum series using System; class GFG { static int MOD = 1000000007; // Function to calculate // twice of sum of first N natural numbers static long sum( long N) { long val = N * (N + 1); // taking modulo 10 ^ 9 + 7 val = val % MOD; return val; } // Function to calculate the // terms of summing of sum series static int sumX( int N, int M, int K) { for ( int i = 0; i < M; i++) { N = ( int )sum(K + N); } N = N % MOD; return N; } // Driver code public static void Main() { int N = 1, M = 2, K = 3; Console.WriteLine(sumX(N, M, K)); } } // This code is contributed by anuj_67.. |
PHP
<?php // PHP program to calculate the // terms of summing of sum series // Function to calculate twice of // sum of first N natural numbers function sum( $N ) { $MOD = 1000000007; $val = $N * ( $N + 1); $val = $val % $MOD ; return $val ; } // Function to calculate the terms // of summing of sum series function sumX( $N , $M , $K ) { $MOD = 1000000007; for ( $i = 0; $i < $M ; $i ++) { $N = sum( $K + $N ); } $N = $N % $MOD ; return $N ; } // Driver Code $N = 1; $M = 2; $K = 3; echo (sumX( $N , $M , $K )); // This code is contributed // by Shivi_Aggarwal ?> |
Javascript
<script> // Javascript program to calculate the // terms of summing of sum series // Function to calculate twice of // sum of first N natural numbers function sum(N) { let MOD = 1000000007; let val = N * (N + 1); val = val % MOD; return val; } // Function to calculate the terms // of summing of sum series function sumX(N, M, K) { let MOD = 1000000007; for (let i = 0; i < M; i++) { N = sum(K + N); } N = N % MOD; return N; } // Driver Code let N = 1; let M = 2; let K = 3; document.write (sumX(N, M, K)); // This code is contributed // by Sravan </script> |
Output:
552
Time Complexity: O(M)
Auxiliary Space: O(1), since no extra space has been taken.
Please Login to comment...