Skip to content
Related Articles

Related Articles

Sum of series (n/1) + (n/2) + (n/3) + (n/4) +…….+ (n/n)
  • Difficulty Level : Easy
  • Last Updated : 20 Apr, 2021

Given a value n, find the sum of series, (n/1) + (n/2) + (n/3) + (n/4) +…….+(n/n) where the value of n can be up to 10^12. 
Note: Consider only integer division.
Examples: 
 

Input : n = 5
Output : (5/1) + (5/2) + (5/3) + 
        (5/4) + (5/5) = 5 + 2 + 1 + 1 + 1 
                      = 10

Input : 7
Output : (7/1) + (7/2) + (7/3) + (7/4) +
         (7/5) + (7/6) + (7/7) 
         = 7 + 3 + 2 + 1 + 1 + 1 + 1 
         = 16

 

Below is the program to find the sum of given series: 
 

C++




// CPP program to find
// sum of given series
#include <bits/stdc++.h>
using namespace std;
 
// function to find sum of series
long long int sum(long long int n)
{
    long long int root = sqrt(n);
    long long int ans = 0;
 
    for (int i = 1; i <= root; i++)
        ans += n / i;
     
    ans = 2 * ans - (root * root);
    return ans;
}
 
// driver code
int main()
{
    long long int n = 35;
    cout << sum(n);
    return 0;
}

Java




// Java program to find
// sum of given series
import java.util.*;
 
class GFG {
     
    // function to find sum of series
    static long sum(long n)
    {
        long root = (long)Math.sqrt(n);
        long ans = 0;
      
        for (int i = 1; i <= root; i++)
            ans += n / i;
          
        ans = 2 * ans - (root * root);
         
        return ans;
    }
     
    /* Driver code */
    public static void main(String[] args)
    {
        long n = 35;
        System.out.println(sum(n));
    }
}
     
// This code is contributed by Arnav Kr. Mandal.       

Python3




# Python 3 program to find
# sum of given series
 
import math
 
# function to find sum of series
def sum(n) :
    root = (int)(math.sqrt(n))
    ans = 0
  
    for i in range(1, root + 1) :
        ans = ans + n // i
      
    ans = 2 * ans - (root * root)
    return ans
 
# driver code
n = 35
print(sum(n))
 
# This code is contributed by Nikita Tiwari.

C#




// C# program to find
// sum of given series
using System;
 
class GFG {
     
    // Function to find sum of series
    static long sum(long n)
    {
        long root = (long)Math.Sqrt(n);
        long ans = 0;
     
        for (int i = 1; i <= root; i++)
            ans += n / i;
         
        ans = 2 * ans - (root * root);
         
        return ans;
    }
     
    // Driver code
    public static void Main()
    {
        long n = 35;
        Console.Write(sum(n));
    }
}
     
// This code is contributed vt_m.

PHP




<?php
// PHP program to find
// sum of given series
 
// function to find
// sum of series
function sum($n)
{
    $root = intval(sqrt($n));
    $ans = 0;
 
    for ($i = 1; $i <= $root; $i++)
        $ans += intval($n / $i);
 
    $ans = (2 * $ans) -
           ($root * $root);
    return $ans;
}
 
// Driver code
$n = 35;
echo (sum($n));
 
// This code is contributed by
// Manish Shaw(manishshaw1)
?>

Javascript




<script>
// Javascript program to find
// sum of given series
 
// function to find
// sum of series
function sum(n)
{
    let root = parseInt(Math.sqrt(n));
    let ans = 0;
 
    for (let i = 1; i <= root; i++)
        ans += parseInt(n / i);
 
    ans = (2 * ans) -
        (root * root);
    return ans;
}
 
// Driver code
let n = 35;
document.write(sum(n));
 
// This code is contributed by gfgking.
</script>

Output: 
 

131

Note: If observed closely, we can see that, if we take n common, series turns into an Harmonic Progression.
 

Attention reader! Don’t stop learning now. Get hold of all the important mathematical concepts for competitive programming with the Essential Maths for CP Course at a student-friendly price. To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.




My Personal Notes arrow_drop_up
Recommended Articles
Page :