Sum of series 1^2 + 3^2 + 5^2 + . . . + (2*n – 1)^2

Given a series 12 + 32 + 52 + 72 + . . . + (2*n – 1)2, find sum of the series.

Examples:

Input : n = 4
Output : 84
Explanation : 
sum = 12 + 32 + 52 + 72
    = 1 + 9 + 25 + 49
    = 84

Input : n = 10 
Output : 1330
Explanation :
sum = 12 + 32 + 52 + 72 + 92 + 112 + 132 + 152 + 172 + 192
    = 1 + 9 + 24 + 49 + . . . + 361
    = 1330



C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// Program to find sum of series
// 1^2 + 3^2 + 5^2 + . . . + (2*n - 1)^2.
#include <bits/stdc++.h>
using namespace std;
  
// Function to find sum of series.
int sumOfSeries(int n)
{
    int sum = 0;
    for (int i = 1; i <= n; i++)
        sum = sum + (2 * i - 1) * (2 * i - 1);
    return sum;
}
  
// Driver code
int main()
{
    int n = 10;
  
    cout << sumOfSeries(n);
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Program to find sum of series
// 1^2 + 3^2 + 5^2 + . . . + (2*n - 1)^2.
  
import java.io.*;
  
class GFG {
     
// Function to find sum of series.
 static int sumOfSeries(int n)
{
    int sum = 0;
    for (int i = 1; i <= n; i++)
       sum = sum + (2 * i - 1) * (2 * i - 1);
    return sum;
}
  
// Driver code
  public static void  main(String[] args)
{
    int n = 10;
    System.out.println( sumOfSeries(n));    
}
      
}

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python Program to find sum of series
# 1^2 + 3^2 + 5^2 + . . . + (2*n - 1)^2.
  
import math
  
# Function to find sum of series.
def sumOfSeries(n):
  
    sum = 0
    for i in range(1,n+1):
        sum = sum + (2 * i - 1) * (2 * i - 1)
    return sum
      
# driver code
n= 10
print(sumOfSeries(n))
  
# This code is contributed by Gitanjali.

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# Program to find sum of series
// 1^2 + 3^2 + 5^2 + . . . + (2*n - 1)^2.
using System;
  
class GFG {
      
// Function to find sum of series.
static int sumOfSeries(int n)
{
    int sum = 0;
    for (int i = 1; i <= n; i++)
        sum = sum + (2 * i - 1) * (2 * i - 1);
      
    return sum;
}
  
// Driver code
public static void Main()
{
    int n = 10;
    Console.Write( sumOfSeries(n)); 
}
}
  
/* This code is contributed by vt_m*/

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP Program to find sum of series
// 1^2 + 3^2 + 5^2 + . . . + (2*n - 1)^2.
  
// Function to find sum of series.
function sumOfSeries($n)
{
    $sum = 0;
    for ($i = 1; $i <= $n; $i++)
        $sum = $sum + (2 * $i - 1) * 
                      (2 * $i - 1);
    return $sum;
}
  
// Driver code
$n = 10;
echo(sumOfSeries($n));
  
// This code is contributed by Ajit.
?>

chevron_right


Output:

1330

Time Complexity : O(n)

Another approach : Using formula to find sum of series :

    12 + 32 + 52 + 
     72 + . . . + (2*n - 1)2 
      = (n * (2 * n - 1) * (2 * n + 1)) / 3.


Please refer sum of squares of even and odd numbers for proof.

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// Program to find sum of series
// 1^2 + 3^2 + 5^2 + . . . + (2*n - 1)^2.
#include <bits/stdc++.h>
using namespace std;
  
// Function that find sum of series.
int sumOfSeries(int n)
{
    // Formula to find sum of series.
    return (n * (2 * n - 1) * (2 * n + 1)) / 3;
}
  
// Driver code
int main()
{
    int n = 10;
    cout << sumOfSeries(n);
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java Program to find sum of series
// 1^2 + 3^2 + 5^2 + . . . + (2*n - 1)^2.
  
import java.io.*;
import java.util.*;
  
class GFG {
      
// Function to find sum of series.
static int sumOfSeries(int n)
{
   // Formula to find sum of series.
    return (n * (2 * n - 1) * (2 * n + 1)) / 3;
  
}
  
// Driver function
   public static void main (String[] args) {
   int n=10;
    System.out.println(sumOfSeries(n)); 
      
}
  
}
  
// This code is contributed by Gitanjali.

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python Program to find sum of series
# 1^2 + 3^2 + 5^2 + . . . + (2*n - 1)^2.
  
import math
  
# Function to find sum of series.
def sumOfSeries(n):
  
   # Formula to find sum of series.
    return int((n * (2 * n - 1) * (2 * n + 1)) / 3)
   
# driver code
n=10
print(sumOfSeries(n))
  
# This code is contributed by Gitanjali.

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# Program to find sum of series
// 1^2 + 3^2 + 5^2 + . . . + (2*n - 1)^2.
using System;
  
class GFG {
      
// Function to find sum of series.
static int sumOfSeries(int n)
{
    // Formula to find sum of series.
    return (n * (2 * n - 1) * (2 * n + 1)) / 3;
}
  
// Driver function
public static void Main () 
{
    int n = 10;
    Console.Write(sumOfSeries(n)); 
}
}
  
// This code is contributed by vt_m.

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP Program to find sum of series
// 1^2 + 3^2 + 5^2 + . . . + (2*n - 1)^2.
  
// Function that find sum of series.
function sumOfSeries($n)
{
    // Formula to find sum of series.
    return ($n * (2 * $n - 1) * 
                 (2 * $n + 1)) / 3;
}
  
// Driver code
$n = 10;
echo(sumOfSeries($n));
  
// This code is contributed by Ajit.
?>

chevron_right


Output:

1330

Time Complexity: O(1)



My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : jit_t



Article Tags :
Practice Tags :


Be the First to upvote.


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.