# Sum of the series 1, 3, 6, 10… (Triangular Numbers)

Given n, no of elements in the series, find the summation of the series 1, 3, 6, 10….n. The series mainly represents triangular numbers.

Examples:

```Input: 2
Output: 4
Explanation: 1 + 3 = 4

Input: 4
Output: 20
Explanation: 1 + 3 + 6 + 10 = 20
```

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

A simple solution is to one by one add triangular numbers.

## C++

 `/* CPP program to find sum ` ` ``series 1, 3, 6, 10, 15, 21... ` `and then find its sum*/` `#include ` `using` `namespace` `std; ` ` `  `// Function to find the sum of series ` `int` `seriesSum(``int` `n) ` `{ ` `    ``int` `sum = 0; ` `    ``for` `(``int` `i=1; i<=n; i++) ` `       ``sum += i*(i+1)/2; ` `    ``return` `sum; ` `} ` ` `  `// Driver code ` `int` `main() ` `{ ` `    ``int` `n = 4; ` `    ``cout << seriesSum(n); ` `    ``return` `0; ` `} `

## Java

 `// Java program to find sum ` `// series 1, 3, 6, 10, 15, 21... ` `// and then find its sum*/ ` `import` `java.io.*; ` ` `  `class` `GFG { ` `         `  `    ``// Function to find the sum of series ` `    ``static` `int` `seriesSum(``int` `n) ` `    ``{ ` `        ``int` `sum = ``0``; ` `        ``for` `(``int` `i = ``1``; i <= n; i++) ` `        ``sum += i * (i + ``1``) / ``2``; ` `        ``return` `sum; ` `    ``} ` ` `  `    ``// Driver code ` `    ``public` `static` `void` `main (String[] args)  ` `    ``{ ` `        ``int` `n = ``4``; ` `        ``System.out.println(seriesSum(n)); ` `         `  `    ``} ` `} ` ` `  `// This article is contributed by vt_m `

## Python3

 `# Python3 program to find sum ` `# series 1, 3, 6, 10, 15, 21... ` `# and then find its sum. ` ` `  `# Function to find the sum of series ` `def` `seriessum(n): ` `     `  `    ``sum` `=` `0` `    ``for` `i ``in` `range``(``1``, n ``+` `1``): ` `        ``sum` `+``=` `i ``*` `(i ``+` `1``) ``/` `2` `    ``return` `sum` `     `  `# Driver code ` `n ``=` `4` `print``(seriessum(n)) ` ` `  `# This code is Contributed by Azkia Anam. `

## C#

 `// C# program to find sum ` `// series 1, 3, 6, 10, 15, 21... ` `// and then find its sum*/ ` `using` `System; ` ` `  `class` `GFG { ` ` `  `    ``// Function to find the sum of series ` `    ``static` `int` `seriesSum(``int` `n) ` `    ``{ ` `        ``int` `sum = 0; ` `         `  `        ``for` `(``int` `i = 1; i <= n; i++) ` `            ``sum += i * (i + 1) / 2; ` `             `  `        ``return` `sum; ` `    ``} ` ` `  `    ``// Driver code ` `    ``public` `static` `void` `Main() ` `    ``{ ` `        ``int` `n = 4; ` `         `  `        ``Console.WriteLine(seriesSum(n)); ` `    ``} ` `} ` ` `  `// This article is contributed by vt_m. `

## PHP

 ` `

Output:

```20
```

Time complexity : O(n)

An efficient solution is to use direct formula n(n+1)(n+2)/6

```Let g(i) be i-th triangular number.
g(1) = 1
g(2) = 3
g(3) = 6
g(n) = n(n+1)/2```
```Let f(n) be the sum of the triangular
numbers 1 through n.
f(n) = g(1) + g(2) + ... + g(n)

Then:
f(n) = n(n+1)(n+2)/6```

How can we prove this? We can prove it by induction. That is, prove two things :

1. It’s true for some n (n = 1, in this case).
2. If it’s true for n, then it’s true for n+1.

This allows us to conclude that it’s true for all n >= 1.

```Now 1) is easy. We know that f(1) = g(1)
= 1. So it's true for n = 1.

Now for 2). Suppose it's true for n.
Consider f(n+1). We have:
f(n+1) = g(1) + g(2) + ... + g(n) + g(n+1)
= f(n) + g(n+1)

Using our assumption f(n) = n(n+1)(n+2)/6
and g(n+1) = (n+1)(n+2)/2, we have:
f(n+1) = n(n+1)(n+2)/6 + (n+1)(n+2)/2
= n(n+1)(n+2)/6 + 3(n+1)(n+2)/6
= (n+1)(n+2)(n+3)/6
Therefore, f(n) = n(n+1)(n+2)/6```

Below is the implementation of the above approach:

## C++

 `/* CPP program to find sum ` ` ``series 1, 3, 6, 10, 15, 21... ` `and then find its sum*/` `#include ` `using` `namespace` `std; ` ` `  `// Function to find the sum of series ` `int` `seriesSum(``int` `n) ` `{ ` `    ``return` `(n * (n + 1) * (n + 2)) / 6;  ` `} ` ` `  `// Driver code ` `int` `main() ` `{ ` `    ``int` `n = 4; ` `    ``cout << seriesSum(n); ` `    ``return` `0; ` `} `

## Java

 `// java program to find sum ` `// series 1, 3, 6, 10, 15, 21... ` `// and then find its sum ` `import` `java.io.*; ` ` `  `class` `GFG  ` `{ ` `    ``// Function to find the sum of series ` `    ``static` `int` `seriesSum(``int` `n) ` `    ``{ ` `        ``return` `(n * (n + ``1``) * (n + ``2``)) / ``6``;  ` `    ``} ` ` `  `   ``// Driver code ` `    ``public` `static` `void` `main (String[] args) { ` `         `  `        ``int` `n = ``4``; ` `        ``System.out.println( seriesSum(n)); ` `         `  `    ``} ` `} ` ` `  `// This article is contributed by vt_m `

## Python3

 `# Python 3 program to find sum ` `# series 1, 3, 6, 10, 15, 21... ` `# and then find its sum*/ ` ` `  `# Function to find the sum of series ` `def` `seriesSum(n): ` ` `  `    ``return` `int``((n ``*` `(n ``+` `1``) ``*` `(n ``+` `2``)) ``/` `6``) ` ` `  ` `  `# Driver code ` `n ``=` `4` `print``(seriesSum(n)) ` ` `  `# This code is contributed by Smitha. `

## C#

 `// C# program to find sum ` `// series 1, 3, 6, 10, 15, 21... ` `// and then find its sum ` `using` `System; ` ` `  `class` `GFG { ` `     `  `    ``// Function to find the sum of series ` `    ``static` `int` `seriesSum(``int` `n) ` `    ``{ ` `        ``return` `(n * (n + 1) * (n + 2)) / 6; ` `    ``} ` ` `  `    ``// Driver code ` `    ``public` `static` `void` `Main() ` `    ``{ ` ` `  `        ``int` `n = 4; ` `         `  `        ``Console.WriteLine(seriesSum(n)); ` `    ``} ` `} ` ` `  `// This code is contributed by vt_m. `

## PHP

 ` `

Output:

```20
```

Time complexity : O(1)

GeeksforGeeks has prepared a complete interview preparation course with premium videos, theory, practice problems, TA support and many more features. Please refer Placement 100 for details

My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Article Tags :
Practice Tags :

Be the First to upvote.

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.