Sum of the series 1, 3, 6, 10… (Triangular Numbers)

Given n, no of elements in the series, find the summation of the series 1, 3, 6, 10….n. The series mainly represents triangular numbers.

Examples:

Input: 2
Output: 4
Explanation: 1 + 3 = 4

Input: 4
Output: 20
Explanation: 1 + 3 + 6 + 10 = 20



A simple solution is to one by one add triangular numbers.

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

/* CPP program to find sum
 series 1, 3, 6, 10, 15, 21...
and then find its sum*/
#include <iostream>
using namespace std;
  
// Function to find the sum of series
int seriesSum(int n)
{
    int sum = 0;
    for (int i=1; i<=n; i++)
       sum += i*(i+1)/2;
    return sum;
}
  
// Driver code
int main()
{
    int n = 4;
    cout << seriesSum(n);
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to find sum
// series 1, 3, 6, 10, 15, 21...
// and then find its sum*/
import java.io.*;
  
class GFG {
          
    // Function to find the sum of series
    static int seriesSum(int n)
    {
        int sum = 0;
        for (int i = 1; i <= n; i++)
        sum += i * (i + 1) / 2;
        return sum;
    }
  
    // Driver code
    public static void main (String[] args) 
    {
        int n = 4;
        System.out.println(seriesSum(n));
          
    }
}
  
// This article is contributed by vt_m

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program to find sum
# series 1, 3, 6, 10, 15, 21...
# and then find its sum.
  
# Function to find the sum of series
def seriessum(n):
      
    sum = 0
    for i in range(1, n + 1):
        sum += i * (i + 1) / 2
    return sum
      
# Driver code
n = 4
print(seriessum(n))
  
# This code is Contributed by Azkia Anam.

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to find sum
// series 1, 3, 6, 10, 15, 21...
// and then find its sum*/
using System;
  
class GFG {
  
    // Function to find the sum of series
    static int seriesSum(int n)
    {
        int sum = 0;
          
        for (int i = 1; i <= n; i++)
            sum += i * (i + 1) / 2;
              
        return sum;
    }
  
    // Driver code
    public static void Main()
    {
        int n = 4;
          
        Console.WriteLine(seriesSum(n));
    }
}
  
// This article is contributed by vt_m.

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP program to find sum
// series 1, 3, 6, 10, 15, 21...
// and then find its sum
  
// Function to find 
// the sum of series
function seriesSum($n)
{
    $sum = 0;
    for ($i = 1; $i <= $n; $i++)
        $sum += $i * ($i + 1) / 2;
    return $sum;
}
  
// Driver code
$n = 4;
echo(seriesSum($n));
  
// This code is contributed by Ajit.
?>

chevron_right



Output:

20

Time complexity : O(n)

An efficient solution is to use direct formula n(n+1)(n+2)/6

Let g(i) be i-th triangular number.
g(1) = 1
g(2) = 3
g(3) = 6
g(n) = n(n+1)/2
Let f(n) be the sum of the triangular
numbers 1 through n.
f(n) = g(1) + g(2) + ... + g(n)

Then:
f(n) = n(n+1)(n+2)/6

How can we prove this? We can prove it by induction. That is, prove two things :

  1. It’s true for some n (n = 1, in this case).
  2. If it’s true for n, then it’s true for n+1.

This allows us to conclude that it’s true for all n >= 1.

Now 1) is easy. We know that f(1) = g(1) 
= 1. So it's true for n = 1.

Now for 2). Suppose it's true for n. 
Consider f(n+1). We have:
f(n+1) = g(1) + g(2) + ... + g(n) + g(n+1) 
       = f(n) + g(n+1)

Using our assumption f(n) = n(n+1)(n+2)/6 
and g(n+1) = (n+1)(n+2)/2, we have:
f(n+1) = n(n+1)(n+2)/6 + (n+1)(n+2)/2
       = n(n+1)(n+2)/6 + 3(n+1)(n+2)/6
       = (n+1)(n+2)(n+3)/6
Therefore, f(n) = n(n+1)(n+2)/6

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

/* CPP program to find sum
 series 1, 3, 6, 10, 15, 21...
and then find its sum*/
#include <iostream>
using namespace std;
  
// Function to find the sum of series
int seriesSum(int n)
{
    return (n * (n + 1) * (n + 2)) / 6; 
}
  
// Driver code
int main()
{
    int n = 4;
    cout << seriesSum(n);
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// java program to find sum
// series 1, 3, 6, 10, 15, 21...
// and then find its sum
import java.io.*;
  
class GFG 
{
    // Function to find the sum of series
    static int seriesSum(int n)
    {
        return (n * (n + 1) * (n + 2)) / 6
    }
  
   // Driver code
    public static void main (String[] args) {
          
        int n = 4;
        System.out.println( seriesSum(n));
          
    }
}
  
// This article is contributed by vt_m

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python 3 program to find sum
# series 1, 3, 6, 10, 15, 21...
# and then find its sum*/
  
# Function to find the sum of series
def seriesSum(n):
  
    return int((n * (n + 1) * (n + 2)) / 6)
  
  
# Driver code
n = 4
print(seriesSum(n))
  
# This code is contributed by Smitha.

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to find sum
// series 1, 3, 6, 10, 15, 21...
// and then find its sum
using System;
  
class GFG {
      
    // Function to find the sum of series
    static int seriesSum(int n)
    {
        return (n * (n + 1) * (n + 2)) / 6;
    }
  
    // Driver code
    public static void Main()
    {
  
        int n = 4;
          
        Console.WriteLine(seriesSum(n));
    }
}
  
// This code is contributed by vt_m.

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP program to find sum
// series 1, 3, 6, 10, 15, 21...
// and then find its sum
  
// Function to find 
// the sum of series
function seriesSum($n)
{
    return ($n * ($n + 1) * 
           ($n + 2)) / 6; 
}
  
// Driver code
$n = 4;
echo(seriesSum($n));
  
// This code is contributed by Ajit.
?>

chevron_right



Output:

20

Time complexity : O(1)



My Personal Notes arrow_drop_up

Contented with little yet wishing for more

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.