Find the sum up to n terms of the series: 1.2.3 + 2.3.4 + … + n(n+1)(n+2). In this 1.2.3 represent the first term and 2.3.4 represent the second term .
Examples :
Input : 2
Output : 30
Explanation: 1.2.3 + 2.3.4 = 6 + 24 = 30
Input : 3
Output : 90
Simple Approach We run a loop for i = 1 to n, and find the sum of (i)*(i+1)*(i+2).
And at the end display the sum .
C++
#include <bits/stdc++.h>
using namespace std;
int sumofseries( int n)
{
int res = 0;
for ( int i = 1; i <= n; i++)
res += (i) * (i + 1) * (i + 2);
return res;
}
int main()
{
cout << sumofseries(3) << endl;
return 0;
}
|
Java
import java.io.*;
import java.math.*;
class GFG
{
static int sumofseries( int n)
{
int res = 0 ;
for ( int i = 1 ; i <= n; i++)
res += (i) * (i + 1 ) * (i + 2 );
return res;
}
public static void main(String[] args)
{
System.out.println(sumofseries( 3 ));
}
}
|
Python3
def sumofseries(n):
res = 0
for i in range ( 1 , n + 1 ):
res + = (i) * (i + 1 ) * (i + 2 )
return res
print (sumofseries( 3 ))
|
C#
using System;
class GFG
{
static int sumofseries( int n)
{
int res = 0;
for ( int i = 1; i <= n; i++)
res += (i) * (i + 1) * (i + 2);
return res;
}
public static void Main()
{
Console.WriteLine(sumofseries(3));
}
}
|
PHP
<?php
function sumofseries( $n )
{
$res = 0;
for ( $i = 1; $i <= $n ; $i ++)
$res += ( $i ) * ( $i + 1) *
( $i + 2);
return $res ;
}
echo sumofseries(3);
?>
|
Javascript
<script>
function sumofseries(n)
{
let res = 0;
for (let i = 1; i <= n; i++)
res += (i) * (i + 1) * (i + 2);
return res;
}
document.write(sumofseries(3));
</script>
|
Time Complexity: O(N)
Auxiliary Space: O(1)
Efficient Approach
Using Efficient Approach we know that we have to find = summation of( (n)*(n+1)*(n+2) )
Sn = summation[ (n)*(n+1)*(n+2) ]
Sn = summation [n3 + 2*n2 + n2 + 2*n]
We know sum of cubes of natural numbers is (n*(n+1))/2)2, sum of squares of natural numbers is n * (n + 1) * (2n + 1) / 6 and sum of first n natural numbers is n(n+1)/2
Sn = ((n*(n+1))/2)2 + 3((n)*(n+1)*(2*n+1)/6) + 2*((n)*(n+1)/2)
So by evaluating the above we get,
Sn = (n*(n+1)*(n+2)*(n+3)/4)
Hence it has a O(1) complexity.
C++
#include <bits/stdc++.h>
using namespace std;
int sumofseries( int n)
{
return (n * (n + 1) *
(n + 2) * (n + 3) / 4);
}
int main()
{
cout << sumofseries(3) << endl;
return 0;
}
|
Java
import java.io.*;
import java.math.*;
class GFG
{
static int sumofseries( int n)
{
return (n * (n + 1 ) *
(n + 2 ) * (n + 3 ) / 4 );
}
public static void main(String[] args)
{
System.out.println(sumofseries( 3 ));
}
}
|
Python3
def sumofseries(n):
return int (n * (n + 1 ) * (n + 2 ) * (n + 3 ) / 4 )
print (sumofseries( 3 ))
|
C#
using System;
class GFG
{
static int sumofseries( int n)
{
return (n * (n + 1) *
(n + 2) * (n + 3) / 4);
}
public static void Main()
{
Console.WriteLine(sumofseries(3));
}
}
|
PHP
<?php
function sumofseries( $n )
{
return ( $n * ( $n + 1) *
( $n + 2) * ( $n + 3) / 4);
}
echo sumofseries(3);
?>
|
Javascript
<script>
function sumofseries(n)
{
return (n * (n + 1) *
(n + 2) * (n + 3) / 4);
}
document.write(sumofseries(3));
</script>
|
Time Complexity: O(1)
Auxiliary Space: O(1)