Given a positive integer n, find the sum of the series upto n terms.
Examples :
Input : n = 4
Output : 3.91667
Series : (1 / 1) + (1 + 2) / (1 * 2) + (1 + 2 + 3) / (1 * 2 * 3) + (1 + 2 + 3 + 4) / (1 * 2 * 3 * 4)
= 1 / 1 + 3 / 2 + 6 / 6 + 10 / 24
= 3.91667
Input : n = 6
Output : 4.07083
Series : (1 / 1) + (1 + 2) / (1 * 2) + (1 + 2 + 3) / (1 * 2 * 3) + (1 + 2 + 3 + 4) / (1 * 2 * 3 * 4) + (1 + 2 + 3 + 4 + 5) / (1 * 2 * 3 * 4 * 5) + (1 + 2 + 3 + 4 + 5 + 6) / (1 * 2 * 3 * 4 * 5 * 6)
= 1 / 1 + 3 / 2 + 6 / 6 + 10 / 24 + 15 / 120 + 21 / 720
= 4.07083
C++
#include <bits/stdc++.h>
using namespace std;
double sumOfSeries( int n)
{
double res = 0.0 ;
int sum = 0, prod = 1;
for ( int i = 1 ; i <= n ; i++)
{
sum += i;
prod *= i;
res += (( double )sum / prod);
}
return res;
}
int main()
{
int n = 4 ;
cout << sumOfSeries(n) ;
return 0;
}
|
Java
class GFG
{
static double sumOfSeries( int n)
{
double res = 0.0 ;
int sum = 0 , prod = 1 ;
for ( int i = 1 ; i <= n; i++) {
sum += i;
prod *= i;
res += (( double )sum / prod);
}
return res;
}
public static void main(String arg[]) {
int n = 4 ;
System.out.println(sumOfSeries(n));
}
}
|
Python3
def sumOfSeries(n) :
res = 0.0
sum = 0
prod = 1
for i in range ( 1 , n + 1 ) :
sum = sum + i
prod = prod * i
res = res + ( sum / prod)
return res
n = 4
print ( round (sumOfSeries(n), 5 ))
|
C#
using System;
class GFG {
static double sumOfSeries( int n)
{
double res = 0.0;
int sum = 0, prod = 1;
for ( int i = 1; i <= n; i++) {
sum += i;
prod *= i;
res += (( double )sum / prod);
}
return res;
}
public static void Main()
{
int n = 4;
Console.Write(sumOfSeries(n));
}
}
|
PHP
<?php
function sumOfSeries( $n )
{
$res = 0.0 ;
$sum = 0; $prod = 1;
for ( $i = 1 ; $i <= $n ; $i ++)
{
$sum += $i ;
$prod *= $i ;
$res += ((double) $sum / $prod );
}
return $res ;
}
$n = 4 ;
echo (sumOfSeries( $n )) ;
?>
|
Javascript
<script>
function sumOfSeries(n)
{
let res = 0.0 ;
let sum = 0, prod = 1;
for (let i = 1 ; i <= n ; i++)
{
sum += i;
prod *= i;
res += (sum / prod);
}
return res;
}
let n = 4 ;
document.write(sumOfSeries(n).toFixed(5)) ;
</script>
|
Output :
3.91667
Time complexity: O(n) since using a single loop
Auxiliary Space: O(1) for constant space for variables
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!
Last Updated :
20 Feb, 2023
Like Article
Save Article