Open In App
Related Articles

Sum of the series 0.7, 0.77, 0.777, … upto n terms

Improve
Improve
Improve
Like Article
Like
Save Article
Save
Report issue
Report

Given n the number of terms. Find the sum of the series 0.7, 0.77, 0.777, … upto n terms.
Examples : 
 

Input : 2
Output : 1.46286

Input : 3
Output : 2.23609


 


Approach Used : 
Let’s denote the sum of the series by S:
 

Sum = 0.7 + 0.77 + 0.777 + …. up to n terms 
= 7/9(0.9 + 0.99 + 0.999 + … up to n terms) 
= 7/9[(1 – 0.1) + (1 – 0.01) + (1-0.001) + … up to n terms] 
= 7/9[(1 + 1 + 1… upto n terms) – (1/10 + 1/100 + 1/1000 + … upto n terms)] 
= 7/9[n – 0.1 * (1 – (0.1)n)/(1 – 0.1)] 
= 7/81[9n – 1 + 10-n
 


Below is the Implementation to find the sum of given series: 
 

C++

// C++ program for sum of the series 0.7, 
// 0.77, 0.777, ... upto n terms
#include <bits/stdc++.h>
using namespace std;
  
// function which return 
// the sum of series
float sumOfSeries(int n)
{
    return .086 * (9 * n - 1 +
           pow(10, (-1) * n));
}
  
// Driver code
int main()
{
    int n = 2;
    cout << sumOfSeries(n);
    return 0;
}

                    

Java

// Java program for sum of the series 0.7, 
// 0.77, 0.777, ... upto n terms
import java.io.*;
import java.math.*;
  
class GFG {
  
    // function which return 
    // the sum of series
    static float sumOfSeries(int n)
    {
        return .086f * (9 * n - 1
        (float)(Math.pow(10, (-1) * n)));
    }
  
    // Driver code
    public static void main(String args[])
    {
        int n = 2;
        System.out.println(sumOfSeries(n));
    }
}
  
/*This code is contributed by Nikita Tiwari.*/

                    

Python3

# Python 3 program for sum of the series 0.7, 
# 0.77, 0.777, ... upto n terms
import math
  
# Function which return 
# the sum of series
def sumOfSeries(n) :
    return .086 * (9 * n - 1 + math.pow(10, (-1) * n));
  
  
# Driver code
n = 2
print(sumOfSeries(n))
  
  
# This code is contributed by Nikita Tiwari.

                    

C#

// C# program for sum of the series  
// 0.7, 0.77, 0.777, ... upto n terms
using System;
  
class GFG {
  
    // Function which return 
    // the sum of series
    static float sumOfSeries(int n)
    {
        return .086f * (9 * n - 1 + 
               (float)(Math.Pow(10, (-1) * n)));
    }
  
    // Driver code
    public static void Main()
    {
        int n = 2;
        Console.Write(sumOfSeries(n));
    }
}
  
// This code is contributed by vt_m.

                    

PHP

<?php
// PHP program for sum of the series 
// 0.7, 0.77, 0.777, ... upto n terms
  
// function which return 
// the sum of series
function sumOfSeries($n)
{
    return .086 * (9 * $n - 1 +
            pow(10, (-1) * $n));
}
  
// Driver code
$n = 2;
echo(sumOfSeries($n));
  
// This code is contributed by Ajit.
?>

                    

Javascript

<script>
  
// javascript program for sum of the series 0.7, 
// 0.77, 0.777, ... upto n terms
  
// function which return 
// the sum of series
function sumOfSeries( n)
{
    return .086 * (9 * n - 1 +
           Math.pow(10, (-1) * n));
}
// Driver Code
let n = 2 ;
   document.write(sumOfSeries(n).toFixed(5)) ; 
     
// This code contributed by aashish1995
  
</script>

                    

Output: 

1.46286

Time Complexity: O(logn), where n is the given integer.

Auxiliary Space: O(1), no extra space is required, so it is a constant.



Last Updated : 20 Feb, 2023
Like Article
Save Article
Previous
Next
Share your thoughts in the comments
Similar Reads