Given the number of terms i.e. n. Find the sum of the series 0.6, 0.06, 0.006, 0.0006, …to n terms.
Examples:
Input : 2
Output : 0.65934
Input : 3
Output : 0.665334
Let’s denote the sum by S:
Using the formula
, we have [since r<1]



Hence the required sum is 
Below is the implementation:
C++
#include <bits/stdc++.h>
using namespace std;
float sumOfSeries( int n)
{
return (0.666) * (1 - 1 / pow (10, n));
}
int main()
{
int n = 2;
cout << sumOfSeries(n);
}
|
Java
import java.io.*;
class GFG
{
static double sumOfSeries( int n)
{
return ( 0.666 ) * ( 1 - 1 /Math. pow( 10 , n));
}
public static void main (String[] args)
{
int n = 2 ;
System.out.println ( sumOfSeries(n));
}
}
|
Python3
import math
def sumOfSeries(n):
return (( 0.666 ) *
( 1 - 1 / pow ( 10 , n)));
n = 2 ;
print (sumOfSeries(n));
|
C#
using System;
class GFG {
static double sumOfSeries( int n)
{
return (0.666) * (1 - 1 /Math. Pow(10, n));
}
public static void Main ()
{
int n = 2;
Console.WriteLine( sumOfSeries(n));
}
}
|
PHP
<?php
function sumOfSeries( $n )
{
return (0.666) * (1 - 1 /
pow(10, $n ));
}
$n = 2;
echo (sumOfSeries( $n ));
?>
|
Javascript
<script>
function sumOfSeries( n)
{
return (0.666) * (1 - 1 / Math.pow(10, n));
}
let n = 2 ;
document.write(sumOfSeries(n).toFixed(5)) ;
</script>
|
Method2 :
C++
#include <iostream>
#include <cmath>
double sum_of_series( int n) {
return 0.6 * (1 - pow (1/10.0, n)) / (1 - 1/10.0);
}
int main() {
int n;
n=3;
std::cout << "Sum of the series to " << n << " terms: " << sum_of_series(n) << std::endl;
return 0;
}
|
Java
public class Main {
public static void main(String[] args)
{
int n = 3 ;
System.out.println( "Sum of the series to " + n
+ " terms: " + sumOfSeries(n));
}
public static double sumOfSeries( int n)
{
return 0.6 * ( 1 - Math.pow( 1 / 10.0 , n))
/ ( 1 - 1 / 10.0 );
}
}
}
|
Python3
import math
def sum_of_series(n):
return 0.6 * ( 1 - pow ( 1 / 10.0 , n)) / ( 1 - 1 / 10.0 )
n = 3
print ( "Sum of the series to" , n, "terms:" , sum_of_series(n))
|
C#
using System;
public class Program {
public static double SumOfSeries( int n) {
return 0.6 * (1 - Math.Pow(1.0 / 10, n)) / (1 - 1.0 / 10);
}
public static void Main() {
int n = 3;
Console.WriteLine( "Sum of the series to {0} terms: {1}" , n, SumOfSeries(n));
}
}
|
Javascript
function sumOfSeries(n) {
return 0.6 * (1 - Math.pow(1 / 10, n)) / (1 - 1 / 10);
}
let n = 3;
console.log(`Sum of the series to ${n} terms: ${sumOfSeries(n)}`);
|
OutputSum of the series to 3 terms: 0.666
Time complexity: O(logn) because using inbuilt pow function
Auxiliary Space: O(1)
Method3:
1. This code uses the formula for the sum of the series, which is S = 2*((1 – 1/10^n))/3.
2. The code initializes an integer variable n to 3, which represents the number of terms in the series to sum. It then computes the sum of the series using the formula and assigns it to a float variable sum.
3. Finally, the code prints the sum to the console.
Note that we use the math.pow() function from the math module to compute the value of 10^n, since the ** operator in Python does not work with large exponents.
Python3
import math
n = 3
sum = 2 * (( 1 - 1 / math. pow ( 10 , n))) / 3
print ( "Sum of the series to" , n, "terms:" , sum )
|
Java
import java.lang.Math;
public class Main {
public static void main(String[] args) {
int n = 3 ;
double sum = 2 *(( 1 - 1 / Math.pow( 10 , n)))/ 3 ;
System.out.println( "Sum of the series to " + n + " terms: " + sum);
}
}
|
C++
#include <iostream>
#include <cmath>
using namespace std;
int main() {
int n = 3;
double sum = 2 * ((1 - 1 / pow (10, n))) / 3;
cout << "Sum of the series to " << n << " terms: " << sum << endl;
return 0;
}
|
C#
using System;
class Program {
static void Main( string [] args) {
int n = 3;
double sum = 2 * ((1 - 1 / Math.Pow(10, n))) / 3;
Console.WriteLine( "Sum of the series to {0} terms: {1}" , n, sum);
}
}
|
Javascript
let n = 3;
let sum = 2 * ((1 - 1 / Math.pow(10, n))) / 3;
console.log(`Sum of the series to ${n} terms: ${sum}`);
|
OutputSum of the series to 3 terms: 0.666
Time complexity: O(1)
Auxiliary Space: O(1)
Please Login to comment...