Skip to content
Related Articles
Get the best out of our app
GeeksforGeeks App
Open App
geeksforgeeks
Browser
Continue

Related Articles

Sum of the series 0.6, 0.06, 0.006, 0.0006, …to n terms

Improve Article
Save Article
Like Article
Improve Article
Save Article
Like Article

Given the number of terms i.e. n. Find the sum of the series 0.6, 0.06, 0.006, 0.0006, …to n terms.
Examples: 

Input : 2
Output : 0.65934

Input : 3
Output : 0.665334

Let’s denote the sum by S: 
Using the formula S_{n}=\frac{a\left ( 1-r^{n} \right )}{1-r}                      , we have [since r<1]
S_{n}=\frac{\frac{6}{10}\left \{ 1-\left ( \frac{1}{10} \right )^n\right \}}{1-\frac{1}{10}}
S_{n}=\frac{6}{9}\left ( 1-\frac{1}{10^n} \right )
S_{n}=\frac{2}{3}\left ( 1-\frac{1}{10^n} \right )
Hence the required sum is S_{n}=\frac{2}{3}\left ( 1-\frac{1}{10^n} \right )
Below is the implementation: 

C++




// CPP program to find sum of 0.6, 0.06,
// 0.006, 0.0006, ...to n terms
#include <bits/stdc++.h>
using namespace std;
 
// function which return the
// the sum of series
float sumOfSeries(int n)
{
    return (0.666) * (1 - 1 / pow(10, n));
}
 
// Driver code
int main()
{
    int n = 2;
    cout << sumOfSeries(n);
}

Java




// java program to find sum of 0.6, 0.06,
// 0.006, 0.0006, ...to n terms
import java.io.*;
 
class GFG
{
    // function which return the
    // the sum of series
    static double sumOfSeries(int n)
    {
        return (0.666) * (1 - 1 /Math. pow(10, n));
    }
     
     
    // Driver code
    public static void main (String[] args)
    {
        int n = 2;
        System.out.println ( sumOfSeries(n));
         
    }
}
 
// This code is contributed by vt_m

Python3




# Python3 program to find
# sum of 0.6, 0.06, 0.006,
# 0.0006, ...to n terms
import math
 
# function which return
# the sum of series
def sumOfSeries(n):
    return ((0.666) *
            (1 - 1 / pow(10, n)));
 
# Driver code
n = 2;
print(sumOfSeries(n));
 
# This code is contributed by mits

C#




// C# program to find sum of 0.6, 0.06,
// 0.006, 0.0006, ...to n terms
using System;
 
class GFG {
     
    // function which return the
    // the sum of series
    static double sumOfSeries(int n)
    {
        return (0.666) * (1 - 1 /Math. Pow(10, n));
    }
     
    // Driver code
    public static void Main ()
    {
        int n = 2;
         
        Console.WriteLine( sumOfSeries(n));
         
    }
}
 
// This code is contributed by vt_m

PHP




<?php
// PHP program to find sum of 0.6, 0.06,
// 0.006, 0.0006, ...to n terms
 
// function which return the
// the sum of series
function sumOfSeries($n)
{
    return (0.666) * (1 - 1 /
                pow(10, $n));
}
 
// Driver code
$n = 2;
echo(sumOfSeries($n));
 
// This code is contributed by Ajit.
?>

Javascript




<script>
// javascript program to find sum of 0.6, 0.06,
// 0.006, 0.0006, ...to n terms
 
// function which return the
// the sum of series
function sumOfSeries( n)
{
    return (0.666) * (1 - 1 / Math.pow(10, n));
}
 
// Driver Code
let n = 2 ;
   document.write(sumOfSeries(n).toFixed(5)) ;
    
// This code is contributed by aashish1995
 
</script>

Output

0.65934

Method2 :

C++




#include <iostream>
#include <cmath>
 
double sum_of_series(int n) {
    return 0.6 * (1 - pow(1/10.0, n)) / (1 - 1/10.0);
}
 
int main() {
    int n;
    n=3;
    std::cout << "Sum of the series to " << n << " terms: " << sum_of_series(n) << std::endl;
    return 0;
}

Java




public class Main {         
 public static void main(String[] args)         
 {         
 int n = 3;         
 System.out.println("Sum of the series to " + n         
 + " terms: " + sumOfSeries(n));         
 }         
 public static double sumOfSeries(int n)         
 {         
 return 0.6 * (1 - Math.pow(1 / 10.0, n))         
 / (1 - 1 / 10.0);         
 }
     }
}

Python3




import math
 
def sum_of_series(n):
    return 0.6 * (1 - pow(1/10.0, n)) / (1 - 1/10.0)
 
n = 3
print("Sum of the series to", n, "terms:", sum_of_series(n))

C#




using System;
 
public class Program {
    public static double SumOfSeries(int n) {
        return 0.6 * (1 - Math.Pow(1.0 / 10, n)) / (1 - 1.0 / 10);
    }
 
    public static void Main() {
        int n = 3;
        Console.WriteLine("Sum of the series to {0} terms: {1}", n, SumOfSeries(n));
    }
}

Javascript




function sumOfSeries(n) {
  return 0.6 * (1 - Math.pow(1 / 10, n)) / (1 - 1 / 10);
}
 
let n = 3;
console.log(`Sum of the series to ${n} terms: ${sumOfSeries(n)}`);

Output

Sum of the series to 3 terms: 0.666

Time complexity: O(logn) because using inbuilt pow function
Auxiliary Space: O(1) 

Method3:  

1. This code uses the formula for the sum of the series, which is S = 2*((1 – 1/10^n))/3. 

2. The code initializes an integer variable n to 3, which represents the number of terms in the series to sum. It then computes the sum of the series using the formula and assigns it to a float variable sum. 

3. Finally, the code prints the sum to the console.

Note that we use the math.pow() function from the math module to compute the value of 10^n, since the ** operator in Python does not work with large exponents.

Python3




import math
 
n = 3
sum = 2*((1 - 1 / math.pow(10, n)))/3
print("Sum of the series to", n, "terms:", sum)

Java




import java.lang.Math;
 
public class Main {
  public static void main(String[] args) {
    int n = 3;
    double sum = 2*((1 - 1 / Math.pow(10, n)))/3;
    System.out.println("Sum of the series to " + n + " terms: " + sum);
  }
}

C++




#include <iostream>
#include <cmath>
 
using namespace std;
 
int main() {
    int n = 3;
    double sum = 2 * ((1 - 1 / pow(10, n))) / 3;
    cout << "Sum of the series to " << n << " terms: " << sum << endl;
    return 0;
}

C#




using System;
 
class Program {
    static void Main(string[] args) {
        int n = 3;
        double sum = 2 * ((1 - 1 / Math.Pow(10, n))) / 3;
        Console.WriteLine("Sum of the series to {0} terms: {1}", n, sum);
    }
}

Javascript




let n = 3;
let sum = 2 * ((1 - 1 / Math.pow(10, n))) / 3;
console.log(`Sum of the series to ${n} terms: ${sum}`);

Output

Sum of the series to 3 terms: 0.666

Time complexity: O(1) 
Auxiliary Space: O(1)


My Personal Notes arrow_drop_up
Last Updated : 30 Mar, 2023
Like Article
Save Article
Similar Reads
Related Tutorials