Sum of the products of all possible Subsets

Given an array of n non-negative integers. The task is to find the sum of the product of elements of all the possible subsets. It may be assumed that the numbers in subsets are small and computing product doesn’t cause arithmetic overflow.

Example :

Input : arr[] = {1, 2, 3}
Output : 23
Possible Subset are: 1, 2, 3, {1, 2}, {1, 3}, 
                     {2, 3}, {1, 2, 3}
Products of elements in above subsets :
1, 2, 3, 2, 3, 6, 6
Sum of all products = 1 + 2 + 3 + 2 + 3 + 6 + 6 
                    = 23


Naive Approach: Simple approach is to generate all possible subset one by one and calculate sum of all elements. Time Complexity of this approach is exponential as there are total 2n – 1 subsets.

An Efficient approach is to generalize the whole problem into some pattern. Suppose we have two numbers a and b. We can write all possible subset products as:-

   = a + b + ab 
   = a(1+b) + b + 1 - 1 
   = a(1+b) + (1+b) - 1 
   = (a + 1) * (b + 1) - 1
   = (1+a) * (1 + b) - 1

Now take three numbers a, b, c:-

   = a + b + c + ab + bc + ca + abc 
   = a + ac + b + bc + ab + abc + c + 1 - 1
   = a(1+c) + b(1+c) + ab(1+c) + c + 1 - 1
   = (a + b + ab + 1)(1+c) - 1 
   = (1+a) * (1+b) * (1+c) - 1  

The above pattern can be generalized for n numbers.

Below is the implementation of above idea :

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to find sum of product of
// all subsets.
#include <bits/stdc++.h>
using namespace std;
  
// Returns sum of products of all subsets
// of arr[0..n-1]
int productOfSubsetSums(int arr[], int n)
{
    int ans = 1;
    for (int i = 0; i < size; ++i )
        ans = ans * (arr[i] + 1);
    return ans-1;
}
  
// Driver code
int main()
{
    int arr[] = {1, 2, 3, 4};
    int n = sizeof(arr)/sizeof arr[0];
    cout << productOfSubsetSums(arr, n);
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to find sum of product of
// all subsets.
  
public class Subset
{
    // Returns sum of products of all subsets
    // of arr[0..n-1]
    static int productOfSubsetSums(int arr[], int n)
    {
        int ans = 1;
        for (int i = 0; i < n; ++i )
            ans = ans * (arr[i] + 1);
        return ans-1;
    }
      
    public static void main (String[] args)
    {
        int arr[] = {1, 2, 3, 4};
        int n = arr.length;
        System.out.println(productOfSubsetSums(arr, n));
    }
}
  
// This code is contributed by Saket Kumar

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program to
# find sum of product of
# all subsets.
  
# Returns sum of products
# of all subsets
# of arr[0..n-1]
def productOfSubsetSums(arr, n):
    ans = 1;
    for i in range(0,n):
        ans = ans * (arr[i] + 1)
    return ans-1
  
# Driver code
arr = [1, 2, 3, 4]
n = len(arr)
  
print (productOfSubsetSums(arr, n))
      
# This code is contributed
# by Shreyanshi Arun.

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to find sum of 
// product of all subsets.
using System;
  
public class Subset
{
      
    // Returns sum of products of all 
    // subsets of arr[0..n-1]
    static int productOfSubsetSums(int []arr, int n)
    {
        int ans = 1;
        for (int i = 0; i < n; ++i )
            ans = ans * (arr[i] + 1);
        return ans-1;
    }
      
    // Driver Code
    public static void Main ()
    {
        int []arr = {1, 2, 3, 4};
        int n = arr.Length;
        Console.Write(productOfSubsetSums(arr, n));
    }
}
  
// This code is contributed by Nitin Mittal.

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP program to find sum of 
// product of all subsets.
  
// Returns sum of products of 
// all subsets of arr[0..n-1]
function productOfSubsetSums($arr, $n)
{
    $ans = 1;
    for ($i = 0; $i < $n; ++$i )
        $ans = $ans * ($arr[$i] + 1);
    return $ans-1;
}
  
// Driver code
$arr = array(1, 2, 3, 4);
$n = sizeof($arr);
echo(productOfSubsetSums($arr, $n));
  
// This code is contributed by Ajit.
?>

chevron_right



Output:

 119 

Time Complexity: O(n)
Auxiliary Space: O(1)

This article is contributed by Shubham Bansal. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



My Personal Notes arrow_drop_up

Improved By : nitin mittal, jit_t



Article Tags :
Practice Tags :


1


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.