# Sum of product of x and y such that floor(n/x) = y

Given a positive integer n. The task is to find the sum of product of x and y such that ⌊n/x⌋ = y (Integer Division).

Examples:

```Input : n = 5
Output : 21
Following are the possible pairs of (x, y):
(1, 5), (2, 2), (3, 1), (4, 1), (5, 1).
So, 1*5 + 2*2 + 3*1 + 4*1 + 5*1
= 5 + 4 + 3 + 4 + 5
= 21.

Input : n = 10
Output : 87
```

## Recommended: Please solve it on “PRACTICE” first, before moving on to the solution.

Method 1 (Brute Force):
Iterate x from 1 to n to find y. Then add x*y to the answer over each iteration.

Below is the implementation of this approach :

## C++

 `// C++ program to find sum of product of x and y ` `// such that n/x = y (Integer Division) ` `#include ` `using` `namespace` `std; ` ` `  `// Return the sum of product x*y. ` `int` `sumofproduct(``int` `n) ` `{ ` `    ``int` `ans = 0; ` ` `  `    ``// Iterating x from 1 to n ` `    ``for` `(``int` `x = 1; x <= n; x++) ` `    ``{ ` `        ``// Finding y = n/x. ` `        ``int` `y = n/x; ` ` `  `        ``// Adding product of x and y to answer. ` `        ``ans += (y * x); ` `    ``} ` ` `  `    ``return` `ans; ` `} ` ` `  `// Driven Program ` `int` `main() ` `{ ` `    ``int` `n = 10; ` `    ``cout << sumofproduct(n) << endl; ` `    ``return` `0; ` `} `

## Java

 `// Java program to find sum of  ` `// product of x and y such that ` `// n/x = y (Integer Division)  ` `import` `java.io.*; ` ` `  `class` `GFG { ` `     `  `// Return the sum of product x*y. ` `static` `int` `sumofproduct(``int` `n) ` `{ ` `    ``int` `ans = ``0``; ` ` `  `    ``// Iterating x from 1 to n ` `    ``for` `(``int` `x = ``1``; x <= n; x++) ` `    ``{ ` `        ``// Finding y = n/x. ` `        ``int` `y = n / x; ` ` `  `        ``// Adding product of x and  ` `        ``// y to answer. ` `        ``ans += (y * x); ` `    ``} ` ` `  `    ``return` `ans; ` `} ` ` `  `    ``// Driver Code ` `    ``static` `public` `void` `main(String[] args) ` `    ``{ ` `        ``int` `n = ``10``; ` `        ``System.out.println(sumofproduct(n)); ` `    ``} ` `} ` ` `  `// This code is contributed by vt_m. `

## Python3

 `# Python3 program to find sum of ` `# product of x and y such that  ` `# n/x = y (Integer Division) ` ` `  `# Return the sum of product x*y ` `def` `sumofproduct(n): ` `    ``ans ``=` `0` ` `  `    ``# Iterating x from 1 to n ` `    ``for` `x ``in` `range``(``1``, n ``+` `1``): ` `         `  `        ``# Finding y = n/x. ` `        ``y ``=` `int``(n ``/` `x) ` ` `  `        ``# Adding product of x and y to answer. ` `        ``ans ``+``=` `(y ``*` `x) ` ` `  `    ``return` `ans ` ` `  `# Driven Program ` `n ``=` `10` `print` `(sumofproduct(n)) ` ` `  `#This code is Shreyanshi Arun `

## C#

 `// C# program to find sum of  ` `// product of x and y such that ` `// n/x = y (Integer Division)  ` `using` `System; ` ` `  `class` `GFG { ` `     `  `// Return the sum of product x*y. ` `static` `int` `sumofproduct(``int` `n) ` `{ ` `    ``int` `ans = 0; ` ` `  `    ``// Iterating x from 1 to n ` `    ``for` `(``int` `x = 1; x <= n; x++) ` `    ``{ ` `        ``// Finding y = n/x. ` `        ``int` `y = n / x; ` ` `  `        ``// Adding product of x and  ` `        ``// y to answer. ` `        ``ans += (y * x); ` `    ``} ` ` `  `    ``return` `ans; ` `} ` ` `  `    ``// Driver Code ` `    ``static` `public` `void` `Main(String[] args) ` `    ``{ ` `        ``int` `n = 10; ` `        ``Console.WriteLine(sumofproduct(n)); ` `    ``} ` `} ` ` `  `// This code is contributed by vt_m. `

## PHP

 ` `

Output :

```87
```

Time Complexity : O(n)

Method 2 (Efficient Approach):
Let’s solve for n = 10, so
x = 1, y = 10
x = 2, y = 5
x = 3, y = 3
x = 4, y = 2
x = 5, y = 2
x = 6, y = 1
x = 7, y = 1
x = 8, y = 1
x = 9, y = 1
x = 10, y = 1

So, our answer would be 1*10 + 2*5 + 3*3 + 4*2 + 5*2 + 6*1 + 7*1 + 8*1 + 9*1 + 10*1.

Now, observe some value of y is repeating. Also, observe that they are repeating for some range of consecutive value of x like y = 1 is repeating for x = 6 to 10.

So, instead of finding the value of y for all the value of x (1 to n) as done in method 1, try to find the lower and higher value of x for which the value of possible value of y like for y = 1 try to find lower value of x = 6 and higher value of x = 10. Now, observe lower value will be (n/(y+1)) + 1 and higher value will be (n/y). Find the sum of range of x and multiply with y and add to the answer.

How to find the possible value of y?
Observe, y has all values from 1 to sqrt(n) when y is smaller than or equal to x. So for y = 1 to sqrt(n), find the lower and higher limits of x for each y. For n = 10,
y = 1, lo = 6 and hi = 10, ans += (6 + 7 + 8 + 9 + 10)*1
y = 2, lo = 4 and hi = 5, ans += (4 + 5)*2
y = 3, lo = 3 and hi = 3, ans += (3)*3

For other values to be added (for y = 10 and 5 in n = 10), observe they can be found in above steps, for each y, add y * (n/y) in the answer.
For n = 10,
y = 1, ans += 1 * (10/1)
y = 2, ans += 2 * (10/2).

Below is the implementation of this approach:

## C++

 `// C++ program to find sum of product of x and y ` `// such that n/x = y (Integer Division) ` `#include ` `using` `namespace` `std; ` ` `  `// Return the sum of natural number in a range. ` `int` `sumOfRange(``int` `a, ``int` `b) ` `{ ` `    ``// n*(n+1)/2. ` `    ``int` `i = (a * (a+1)) >> 1; ` `    ``int` `j = (b * (b+1)) >> 1; ` `    ``return` `(i - j); ` `} ` ` `  `// Return the sum of product x*y. ` `int` `sumofproduct(``int` `n) ` `{ ` `    ``int` `sum = 0; ` ` `  `    ``// Iterating i from 1 to sqrt(n) ` `    ``int` `root = ``sqrt``(n); ` `    ``for` `(``int` `i=1; i<=root; i++) ` `    ``{ ` `        ``// Finding the upper limit. ` `        ``int` `up = n/i; ` ` `  `        ``// Finding the lower limit. ` `        ``int` `low = max(n/(i+1), root); ` ` `  `        ``sum += (i * sumOfRange(up, low)); ` `        ``sum += (i * (n/i)); ` `    ``} ` ` `  `    ``return` `sum; ` `} ` ` `  `// Driven Program ` `int` `main() ` `{ ` `    ``int` `n = 10; ` `    ``cout << sumofproduct(n) << endl; ` `    ``return` `0; ` `} `

## Java

 `// Java program to find sum of  ` `// product of x and y such that ` `// n / x = y (Integer Division) ` `import` `java.io.*; ` ` `  `class` `GFG { ` `     `  `// Return the sum of natural number in a range. ` `static` `int` `sumOfRange(``int` `a, ``int` `b) ` `{ ` `    ``// n * (n + 1) / 2. ` `    ``int` `i = (a * (a + ``1``)) >> ``1``; ` `    ``int` `j = (b * (b + ``1``)) >> ``1``; ` `    ``return` `(i - j); ` `} ` ` `  `// Return the sum of product x*y. ` `static` `int` `sumofproduct(``int` `n) ` `{ ` `    ``int` `sum = ``0``; ` ` `  `    ``// Iterating i from 1 to sqrt(n) ` `    ``int` `root = (``int``)Math.sqrt(n); ` `    ``for` `(``int` `i = ``1``; i <= root; i++) ` `    ``{ ` `        ``// Finding the upper limit. ` `        ``int` `up = n / i; ` ` `  `        ``// Finding the lower limit. ` `        ``int` `low = Math.max(n / (i + ``1``), root); ` ` `  `        ``sum += (i * sumOfRange(up, low)); ` `        ``sum += (i * (n / i)); ` `    ``} ` ` `  `    ``return` `sum; ` `} ` ` `  `    ``// Driver Code ` `    ``static` `public` `void` `main(String[] args) ` `    ``{ ` `        ``int` `n = ``10``; ` `        ``System.out.println(sumofproduct(n)); ` `    ``} ` `} ` ` `  `// This code is contributed by vt_m. `

## Python3

 `# Python3 program to find sum  ` `# of product of x and y such  ` `# that n/x = y (Integer Division) ` `import` `math ` ` `  `# Return the sum of natural  ` `# number in a range. ` `def` `sumOfRange(a, b): ` `    ``# n*(n+1)/2. ` `    ``i ``=` `(a ``*` `(a ``+` `1``)) >> ``1``; ` `    ``j ``=` `(b ``*` `(b ``+` `1``)) >> ``1``; ` `    ``return` `(i ``-` `j); ` ` `  `# Return the sum of product x*y. ` `def` `sumofproduct(n): ` `    ``sum` `=` `0``; ` ` `  `    ``# Iterating i from 1 to sqrt(n) ` `    ``root ``=` `int``(math.sqrt(n)); ` `    ``for` `i ``in` `range``(``1``, root ``+` `1``): ` `        ``# Finding the upper limit. ` `        ``up ``=` `int``(n ``/` `i); ` ` `  `        ``# Finding the lower limit. ` `        ``low ``=` `max``(``int``(n ``/` `(i ``+` `1``)), root); ` ` `  `        ``sum` `+``=` `(i ``*` `sumOfRange(up, low)); ` `        ``sum` `+``=` `(i ``*` `int``(n ``/` `i)); ` ` `  `    ``return` `sum``; ` ` `  `# Driven Code ` `n ``=` `10``; ` `print``(sumofproduct(n)); ` `     `  `# This code is contributed by mits `

## C#

 `// C# program to find sum of  ` `// product of x and y such that ` `// n / x = y (Integer Division) ` `using` `System; ` ` `  `class` `GFG { ` `     `  `// Return the sum of natural number in a range. ` `static` `int` `sumOfRange(``int` `a, ``int` `b) ` `{ ` `    ``// n * (n + 1) / 2. ` `    ``int` `i = (a * (a + 1)) >> 1; ` `    ``int` `j = (b * (b + 1)) >> 1; ` `    ``return` `(i - j); ` `} ` ` `  `// Return the sum of product x*y. ` `static` `int` `sumofproduct(``int` `n) ` `{ ` `    ``int` `sum = 0; ` ` `  `    ``// Iterating i from 1 to sqrt(n) ` `    ``int` `root = (``int``)Math.Sqrt(n); ` `    ``for` `(``int` `i = 1; i <= root; i++) ` `    ``{ ` `        ``// Finding the upper limit. ` `        ``int` `up = n / i; ` ` `  `        ``// Finding the lower limit. ` `        ``int` `low = Math.Max(n / (i + 1), root); ` ` `  `        ``sum += (i * sumOfRange(up, low)); ` `        ``sum += (i * (n / i)); ` `    ``} ` ` `  `    ``return` `sum; ` `} ` ` `  `    ``// Driver Code ` `    ``static` `public` `void` `Main(String[] args) ` `    ``{ ` `        ``int` `n = 10; ` `        ``Console.WriteLine(sumofproduct(n)); ` `    ``} ` `} ` ` `  `// This code is contributed by vt_m. `

## PHP

 `> 1; ` `    ``\$j` `= (``\$b` `* (``\$b` `+ 1)) >> 1; ` `    ``return` `(``\$i` `- ``\$j``); ` `} ` ` `  `// Return the sum of product x*y. ` `function` `sumofproduct(``\$n``) ` `{ ` `    ``\$sum` `= 0; ` ` `  `    ``// Iterating i from 1 to sqrt(n) ` `    ``\$root` `= sqrt(``\$n``); ` `    ``for` `(``\$i` `= 1; ``\$i` `<= ``\$root``; ``\$i``++) ` `    ``{ ` `        ``// Finding the upper limit. ` `        ``\$up` `= (int)(``\$n` `/ ``\$i``); ` ` `  `        ``// Finding the lower limit. ` `        ``\$low` `= max((int)(``\$n` `/ (``\$i` `+ 1)), ``\$root``); ` ` `  `        ``\$sum` `+= (``\$i` `* sumOfRange(``\$up``, ``\$low``)); ` `        ``\$sum` `+= (``\$i` `* (int)(``\$n` `/ ``\$i``)); ` `    ``} ` ` `  `    ``return` `\$sum``; ` `} ` ` `  `// Driven Code ` `\$n` `= 10; ` `echo` `sumofproduct(``\$n``) . ``"\n"``; ` ` `  `// This code is contributed  ` `// by Akanksha Rai(Abby_akku) ` `?> `

Output:

```87
```

Time Complexity : O((√n)

This article is contributed by Anuj Chauhan(APC). If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up

Article Tags :
Practice Tags :

Be the First to upvote.

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.