Sum of width (max and min diff) of all Subsequences

Given an array A[] of integers. The task is to return the sum of the width of all subsequences of A. For any sequence S, the width of S is the difference between the maximum and minimum elements of S.

Note: Since the answer can be large, print the answer modulo 10^9 + 7.

Examples:



Input : A[] = {1, 3, 2}
Output : 6
Subsequences are {1}, {2}, {3}, {1, 3}, {1, 2} {3, 2} and {1, 3, 2}. Widths are 0, 0, 0, 2, 1, 1 and 2 respectively. Sum of widths is 6.

Input : A[] = [5, 6, 4, 3, 8]
Output : 87

Input : A[] = [1, 2, 3, 4, 5, 6, 7]
Output : 522

The idea is to first, sort the array as sorting the array won’t affect the final answer. After sorting, this allows us to know that the number of subsequences with minimum A[i] and maximum A[j] will be 2j-i-1.

Hence our answer boils down to finding:

 
\sum_{j>i}(2^{j-i-1})(A_{j}-A_{i})

= (\sum_{i=0}^{n-2}\sum_{j=i+1}^{n-1}(2^{j-i-1})(A_{j}))-(\sum_{i=0}^{n-2}\sum_{j=i+1}^{n-1}(2^{j-i-1})(A_{i})) 

= ((2^{0}A_{1}+2^{1}A_{2}+2^{2}A_{3}+...)+(2^{0}A_{2}+2^{1}A_{3}+2^{2}A_{4}+...)+(2^{0}A_{3}+2^{1}A_{4}+2^{2}A_{5}+...)+...)-      (\sum_{i=0}^{n-2}(2^{0}+2^{1}+...+2^{N-i-2})A_{i}+...)

= (\sum_{j=1}^{n-1}(2^{j}-1)A_{j})-(\sum_{i=0}^{n-2}(2^{N-i-1}-1)A_{i})

= \sum_{i=0}^{n-1}((2^{i}-1)A_{i}-(2^{N-i-1}-1)A_{i})

= \sum_{i=0}^{n-1}(2^{i}-2^{N-i-1})A_{i}

Below is the implementation of above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// CPP implementation of above approach
#include <bits/stdc++.h>
using namespace std;
  
#define MOD 1000000007
  
// Function to return sum of width of all subsets
int SubseqWidths(int A[], int n)
{
    // Sort the array
    sort(A, A + n);
  
    int pow2[n];
    pow2[0] = 1;
  
    for (int i = 1; i < n; ++i)
        pow2[i] = (pow2[i - 1] * 2) % MOD;
  
    int ans = 0;
  
    for (int i = 0; i < n; ++i)
        ans = (ans + (pow2[i] - pow2[n - 1 - i]) * A[i]) % MOD;
  
    return ans;
}
  
// Driver program
int main()
{
    int A[] = { 5, 6, 4, 3, 8 };
  
    int n = sizeof(A) / sizeof(A[0]);
  
    cout << SubseqWidths(A, n);
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of above approach
import java.util.Arrays; 
  
class GFG{
static int MOD=1000000007;
  
// Function to return sum of width of all subsets
static int SubseqWidths(int[] A, int n)
{
    // Sort the array
    Arrays.sort(A);
  
    int[] pow2=new int[n];
    pow2[0] = 1;
  
    for (int i = 1; i < n; ++i)
        pow2[i] = (pow2[i - 1] * 2) % MOD;
  
    int ans = 0;
  
    for (int i = 0; i < n; ++i)
        ans = (ans + (pow2[i] - 
                pow2[n - 1 - i]) * A[i]) % MOD;
  
    return ans;
}
  
// Driver program
public static void main(String[] args)
{
    int[] A = new int[]{ 5, 6, 4, 3, 8 };
  
    int n = A.length;
  
    System.out.println(SubseqWidths(A, n));
}
}
// This code is contributed by mits

chevron_right


Python

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 implementation of above approach
  
# Function to return sum of width of all subsets
def SubseqWidths(A):
    MOD = 10**9 + 7
    N = len(A)
    A.sort()
  
    pow2 = [1]
    for i in range(1, N):
        pow2.append(pow2[-1] * 2 % MOD)
  
    ans = 0
    for i, x in enumerate(A):
        ans = (ans + (pow2[i] - pow2[N - 1 - i]) * x) % MOD
    return ans
  
  
# Driver program
A = [5, 6, 4, 3, 8]
  
print(SubseqWidths(A))

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation of above approach
using System;
  
class GFG
{
static int MOD = 1000000007;
  
// Function to return sum of 
// width of all subsets
static int SubseqWidths(int[] A, int n)
{
    // Sort the array
    Array.Sort(A);
  
    int[] pow2 = new int[n];
    pow2[0] = 1;
  
    for (int i = 1; i < n; ++i)
        pow2[i] = (pow2[i - 1] * 2) % MOD;
  
    int ans = 0;
  
    for (int i = 0; i < n; ++i)
        ans = (ans + (pow2[i] - 
                       pow2[n - 1 - i]) * 
                       A[i]) % MOD;
  
    return ans;
}
  
// Driver Code
static void Main()
{
    int[] A = new int[]{ 5, 6, 4, 3, 8 };
  
    int n = A.Length;
      
    Console.WriteLine(SubseqWidths(A, n));
}
}
  
// This code is contributed by mits

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php 
// PHP implementation of above approach
$MOD = 1000000007;
  
// Function to return sum 
// of width of all subsets
function SubseqWidths(&$A, $n)
{
    global $MOD;
      
    // Sort the array
    sort($A);
  
    $pow2 = array_fill(0, $n, NULL);
    $pow2[0] = 1;
  
    for ($i = 1; $i < $n; ++$i)
        $pow2[$i] = ($pow2[$i - 1] * 2) % $MOD;
  
    $ans = 0;
  
    for ($i = 0; $i < $n; ++$i)
        $ans = ($ans + ($pow2[$i] - 
                        $pow2[$n - 1 - $i]) * 
                              $A[$i]) % $MOD;
  
    return $ans;
}
  
// Driver Code
$A = array(5, 6, 4, 3, 8 );
  
$n = sizeof($A);
  
echo SubseqWidths($A, $n);
  
// This code is contributed 
// by ChitraNayal
?>

chevron_right


Output:

87

Time Complexity: O(N*log(N)), where N is the length of A.



My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : chitranayal, Mithun Kumar