Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Sum of the series (1*2) + (2*3) + (3*4) + …… upto n terms

  • Last Updated : 18 Mar, 2021

Given a value n, the task is to find sum of the series (1*2) + (2*3) + (3*4) + ……+ n terms
Examples: 
 

Input: n = 2
Output: 8
Explanation:
(1*2) + (2*3)
= 2 + 6
= 8

Input: n = 3
Output: 20
Explanation:
(1*2) + (2*3) + (2*4)
= 2 + 6 + 12
= 20

 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

Simple Solution One by one add elements recursively.
Below is the implementation 
 



C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return sum
int sum(int n)
{
    if (n == 1) {
        return 2;
    }
    else {
        return (n * (n + 1) + sum(n - 1));
    }
}
 
// Driver code
int main()
{
 
    int n = 2;
    cout << sum(n);
}

Java




// Java implementation of the approach
 
class Solution {
 
    // Function to return a the required result
    static int sum(int n)
    {
        if (n == 1) {
            return 2;
        }
        else {
            return (n * (n + 1) + sum(n - 1));
        }
    }
    // Driver code
    public static void main(String args[])
    {
        int n = 2;
        System.out.println(sum(n));
    }
}

Python3




# Python3 implementation of the approach
 
# Function to return sum
def sum(n):
 
    if (n == 1):
        return 2;
    else:
        return (n * (n + 1) + sum(n - 1));
 
# Driver code
 
n = 2;
print(sum(n));
 
# This code is contributed by mits

C#




// Csharp implementation of the approach
 
using System;
 
class Solution {
 
    // Function to return a the required result
    static int sum(int n)
    {
        if (n == 1) {
            return 2;
        }
        else {
            return (n * (n + 1) + sum(n - 1));
        }
    }
    // Driver code
    public static void Main()
    {
        int n = 2;
        Console.WrieLine(sum(n));
    }
}

PHP




<?php
// PHP implementation of the approach
 
// Function to return sum
function sum($n)
{
    if ($n == 1)
    {
        return 2;
    }
    else
    {
        return ($n * ($n + 1) +
                  sum($n - 1));
    }
}
 
// Driver code
$n = 2;
echo sum($n);
 
// This code is contributed by mits
?>

Javascript




<script>
 
// JavaScript implementation of the approach
 
// Function to return sum
function sum(n)
{
    if (n == 1) {
        return 2;
    }
    else {
        return (n * (n + 1) + sum(n - 1));
    }
}
 
// Driver code
n = 2;
document.write(sum(n));
 
// This code is contributed by rutvik_56.
 
</script>
Output: 
8

 

Time Complexity: O(n)
Efficient Solution We can solve this problem using direct formula. 
Sum can be written as below 
∑(n * (n+1)) 
∑(n*n + n) 
= ∑(n*n) + ∑(n)
We can apply the formulas for sum squares of natural number and sum of natural numbers.
= n(n+1)(2n+1)/6 + n*(n+1)/2 
= n * (n + 1) * (n + 2) / 3
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return sum
int sum(int n)
{
    return n * (n + 1) * (n + 2) / 3;
}
 
// Driver code
int main()
{
    int n = 2;
    cout << sum(n);
}

Java




// Java implementation of the approach
class GFG
{
     
// Function to return sum
static int sum(int n)
{
    return n * (n + 1) * (n + 2) / 3;
}
 
// Driver code
public static void main(String[] args)
{
    int n = 2;
    System.out.println(sum(n));
}
}
 
// This code is contributed by Code_Mech

Python3




# Python3 implementation of the approach.
 
# Function to return sum
def Sum(n):
 
    return n * (n + 1) * (n + 2) // 3
 
# Driver code
if __name__ == "__main__":
 
    n = 2;
    print(Sum(n))
 
# This code is contributed
# by Rituraj Jain

C#




// C# implementation of the approach
using System;
     
class GFG
{
      
// Function to return sum
static int sum(int n)
{
    return n * (n + 1) * (n + 2) / 3;
}
  
// Driver code
public static void Main(String[] args)
{
    int n = 2;
    Console.WriteLine(sum(n));
}
}
// This code contributed by Rajput-Ji

PHP




<?php
// PHP implementation of the approach
 
// Function to return sum
function sum($n)
{
    return $n * ($n + 1) * ($n + 2) / 3;
}
 
// Driver code
$n = 2;
echo sum($n);
 
// This code is contributed
// by 29AjayKumar
?>

Javascript




<script>
// Javascript implementation of the approach
 
// Function to return sum
function sum(n)
{
    return n * (n + 1) * (n + 2) / 3;
}
 
// Driver code
var n = 2;
document.write(sum(n));
 
// This code is contributed by noob2000.
</script>
Output: 
8

 

Time Complexity: O(1)
 




My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!