Given an array **arr[]** consisting of coordinates of **N** points on an **XY-plane**, the task is to find the sum of squared distances between all pairs of points, i.e. **(X _{i} – X_{j})^{2} + (Y_{i} – Y_{j})^{2}** for every distinct pair

**(i, j)**.

**Examples:**

Input:arr[][] = {{1, 1}, {-1, -1}, {1, -1}, {-1, 1}}Output:32Explanation:

Distance of 1^{st}point (1, 1) from the 2^{nd}, 3^{rd}and 4^{th}points are 8, 4 and 4 respectively.

Distance of 2^{nd}point from the 3^{rd}and 4^{th}points are 4 and 4 respectively.

Distance of 3^{rd}point from the 4^{th}point is 8.

Therefore, the total distance = (8 + 4 + 4) + (4 + 4) + (8) = 32

Input:arr[][] = {{1, 1}, {1, 1}, {0, 0}}Output:4Explanation:

Distance of 1^{st}point from the 2^{nd}and 3^{rd}points are 0 and 2 respectively.

Distance of 2^{nd}point from the 3^{rd}point is 2.

Therefore, the total distance = (0 + 2) + (2) = 4

**Naive Approach:** The simplest approach to solve the problem is to generate all possible distinct pairs of the given array **arr[][]** and calculate the sum of squares of distances between all pairs of points (X_{i}, Y_{j}) and (X_{j}, Y_{j}), i.e. (X_{i} – X_{j})^{2} + (Y_{i} – Y_{j})^{2}, for every distinct pair **(i, j)**.

**Time Complexity:** O(N^{2})**Auxiliary Space:** O(1)

**Efficient Approach:** To optimize the above approach, the idea is to regroup the sum and split the sum of squares of distances into two sums. Follow the steps below to solve the problem:

- Initialize variables, say
**xq**,**yq**,**xs**, and**ys**. - Initialize a variable, say
**res**, with**zero**, to store the resultant sum. - Traverse the given array and for each point
**{x, y}**, perform the following steps:- Add the value of
**(i*x**in the variable^{2}+ i*y^{2})**res**, which corresponds to adding of squared distance. - Add the value
**(xq – 2 * xs * a)**and**(yq – 2 * ys * b)**to**res**to nullify the effect of the 2 * X * Y in the expansion of**(a – b)**.^{2} - Add the values
**a**and^{2}**b**to variables^{2}**xq**and**yq**respectively. - Add the values
**a**and**b**to variables**xs**and**ys**respectively. - Add the values
**xs**and**yq**to variables**a**and^{2}**b**respectively.^{2}

- Add the value of
- After completing the above steps, print the value of
**res**as the result.

Below is the implementation of the above approach:

## C++

`// C++ program for the above approach` `#include <bits/stdc++.h>` `using` `namespace` `std;` `// Function to find the sum of squares` `// of distance between all distinct pairs` `void` `findSquareSum(` ` ` `int` `Coordinates[][2], ` `int` `N)` `{` ` ` `long` `long` `xq = 0, yq = 0;` ` ` `long` `long` `xs = 0, ys = 0;` ` ` `// Stores final answer` ` ` `long` `long` `res = 0;` ` ` `// Traverse the array` ` ` `for` `(` `int` `i = 0; i < N; i++) {` ` ` `int` `a, b;` ` ` `a = Coordinates[i][0];` ` ` `b = Coordinates[i][1];` ` ` `res += xq;` ` ` `res -= 2 * xs * a;` ` ` `// Adding the effect of this` ` ` `// point for all the previous` ` ` `// x - points` ` ` `res += i * (` `long` `long` `)(a * a);` ` ` `// Temporarily add the` ` ` `// square of x-coordinate` ` ` `xq += a * a;` ` ` `xs += a;` ` ` `res += yq;` ` ` `res -= 2 * ys * b;` ` ` `res += i * (` `long` `long` `)b * b;` ` ` `// Add the effect of this point` ` ` `// for all the previous y - points` ` ` `yq += b * b;` ` ` `ys += b;` ` ` `}` ` ` `// Print the desired answer` ` ` `cout << res;` `}` `// Driver Code` `int` `main()` `{` ` ` `int` `arr[][2] = { { 1, 1 },` ` ` `{ -1, -1 },` ` ` `{ 1, -1 },` ` ` `{ -1, 1 } };` ` ` `int` `N = ` `sizeof` `(arr) / ` `sizeof` `(arr[0]);` ` ` `findSquareSum(arr, N);` ` ` `return` `0;` `}` |

## Java

`// Java program for the above approach` `import` `java.io.*;` `import` `java.util.*;` `class` `GFG` `{` ` ` `// Function to find the sum of squares` ` ` `// of distance between all distinct pairs` ` ` `static` `void` `findSquareSum(` ` ` `int` `Coordinates[][], ` `int` `N)` ` ` `{` ` ` `long` `xq = ` `0` `, yq = ` `0` `;` ` ` `long` `xs = ` `0` `, ys = ` `0` `;` ` ` `// Stores final answer` ` ` `long` `res = ` `0` `;` ` ` `// Traverse the array` ` ` `for` `(` `int` `i = ` `0` `; i < N; i++) {` ` ` `int` `a, b;` ` ` `a = Coordinates[i][` `0` `];` ` ` `b = Coordinates[i][` `1` `];` ` ` `res += xq;` ` ` `res -= ` `2` `* xs * a;` ` ` `// Adding the effect of this` ` ` `// point for all the previous` ` ` `// x - points` ` ` `res += i * (` `long` `)(a * a);` ` ` `// Temporarily add the` ` ` `// square of x-coordinate` ` ` `xq += a * a;` ` ` `xs += a;` ` ` `res += yq;` ` ` `res -= ` `2` `* ys * b;` ` ` `res += i * (` `long` `)b * b;` ` ` `// Add the effect of this point` ` ` `// for all the previous y - points` ` ` `yq += b * b;` ` ` `ys += b;` ` ` `}` ` ` `// Print the desired answer` ` ` `System.out.println(res);` ` ` `}` ` ` `// Driver Code` ` ` `public` `static` `void` `main(String[] args)` ` ` `{` ` ` `int` `arr[][] = { { ` `1` `, ` `1` `},` ` ` `{ -` `1` `, -` `1` `},` ` ` `{ ` `1` `, -` `1` `},` ` ` `{ -` `1` `, ` `1` `} };` ` ` `int` `N = arr.length;` ` ` `findSquareSum(arr, N);` ` ` `}` `}` `// This code is contributed by code_hunt.` |

## Python3

`# Python3 program for the above approach` `# Function to find the sum of squares` `# of distance between all distinct pairs` `def` `findSquareSum(Coordinates, N):` ` ` `xq , yq ` `=` `0` `, ` `0` ` ` `xs , ys ` `=` `0` `, ` `0` ` ` `# Stores final answer` ` ` `res ` `=` `0` ` ` `# Traverse the array` ` ` `for` `i ` `in` `range` `(N):` ` ` `a ` `=` `Coordinates[i][` `0` `]` ` ` `b ` `=` `Coordinates[i][` `1` `]` ` ` `res ` `+` `=` `xq` ` ` `res ` `-` `=` `2` `*` `xs ` `*` `a` ` ` `# Adding the effect of this` ` ` `# point for all the previous` ` ` `# x - points` ` ` `res ` `+` `=` `i ` `*` `(a ` `*` `a)` ` ` `# Temporarily add the` ` ` `# square of x-coordinate` ` ` `xq ` `+` `=` `a ` `*` `a` ` ` `xs ` `+` `=` `a` ` ` `res ` `+` `=` `yq` ` ` `res ` `-` `=` `2` `*` `ys ` `*` `b` ` ` `res ` `+` `=` `i ` `*` `b ` `*` `b` ` ` `# Add the effect of this point` ` ` `# for all the previous y - points` ` ` `yq ` `+` `=` `b ` `*` `b` ` ` `ys ` `+` `=` `b` ` ` `# Print the desired answer` ` ` `print` `(res)` `# Driver Code` `if` `__name__ ` `=` `=` `'__main__'` `:` ` ` `arr ` `=` `[ [ ` `1` `, ` `1` `],` ` ` `[ ` `-` `1` `, ` `-` `1` `],` ` ` `[ ` `1` `, ` `-` `1` `],` ` ` `[ ` `-` `1` `, ` `1` `] ]` ` ` `N ` `=` `len` `(arr)` ` ` `findSquareSum(arr, N)` `# This code is contributed by mohit kumar 29.` |

## C#

`// C# program for the above approach` `using` `System;` `class` `GFG{` ` ` `// Function to find the sum of squares` `// of distance between all distinct pairs` `static` `void` `findSquareSum(` `int` `[,] Coordinates, ` `int` `N)` `{` ` ` `long` `xq = 0, yq = 0;` ` ` `long` `xs = 0, ys = 0;` ` ` ` ` `// Stores final answer` ` ` `long` `res = 0;` ` ` ` ` `// Traverse the array` ` ` `for` `(` `int` `i = 0; i < N ; i++)` ` ` `{` ` ` `int` `a, b;` ` ` ` ` `a = Coordinates[i, 0];` ` ` `b = Coordinates[i, 1];` ` ` ` ` `res += xq;` ` ` `res -= 2 * xs * a;` ` ` ` ` `// Adding the effect of this` ` ` `// point for all the previous` ` ` ` ` `// x - points` ` ` `res += i * (` `long` `)(a * a);` ` ` ` ` `// Temporarily add the` ` ` `// square of x-coordinate` ` ` `xq += a * a;` ` ` `xs += a;` ` ` `res += yq;` ` ` `res -= 2 * ys * b;` ` ` `res += i * (` `long` `)b * b;` ` ` ` ` `// Add the effect of this point` ` ` `// for all the previous y - points` ` ` `yq += b * b;` ` ` `ys += b;` ` ` `}` ` ` ` ` `// Print the desired answer` ` ` `Console.Write(res);` `}` `// Driver code` `static` `void` `Main()` `{` ` ` `int` `[,] arr = { { 1, 1 },` ` ` `{ -1, -1 },` ` ` `{ 1, -1 },` ` ` `{ -1, 1 } };` ` ` `int` `N = arr.GetLength(0);` ` ` ` ` `findSquareSum(arr, N);` `}` `}` `// This code is contributed by code_hunt` |

**Output:**

32

**Time Complexity:** O(N)**Auxiliary Space:** O(1)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the **DSA Self Paced Course** at a student-friendly price and become industry ready.