Sum of squares of all Subsets of given Array

Given an array arr[]. The value of a subset of array A is defined as the sum of squares of all the numbers in that subset. The task is to calculate the sum of values of all possible non-empty subsets of the given array.
Since, the answer can be large print the val mod 1000000007.

Examples:

Input: arr[] = {3, 7}
Output: 116
val({3}) = 32 = 9
val({7}) = 72 = 49
val({3, 7}) = 32 + 72 = 9 + 49 = 58
9 + 49 + 58 = 116



Input: arr[] = {1, 1, 1}
Output: 12

Naive approach: A simple approach is to find all the subset and then square each element in that subset and add it to the result. The time complexity of this approach will be O(2N)

Efficient approach: It can be observed that in all the possible subsets of the given array, every element will occur 2N – 1 times where N is the size of the array.
So the contribution of any element X in the sum will be 2N – 1 * X2.

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
  
const int mod = 1e9 + 7;
  
// Function to return (2^P % mod)
long long power(int p)
{
    long long res = 1;
    for (int i = 1; i <= p; ++i) {
        res *= 2;
        res %= mod;
    }
    return res % mod;
}
  
// Function to return the sum of squares of subsets
long long subset_square_sum(vector<int>& A)
{
  
    int n = (int)A.size();
  
    long long ans = 0;
  
    // Sqauaring the elements
    // and adding it to ans
    for (int i : A) {
        ans += (1LL * i * i) % mod;
        ans %= mod;
    }
  
    return (1LL * ans * power(n - 1)) % mod;
}
  
// Driver code
int main()
{
    vector<int> A = { 3, 7 };
  
    cout << subset_square_sum(A);
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of the approach 
class GFG 
{
    static final int mod = (int)(1e9 + 7); 
      
    // Function to return (2^P % mod) 
    static long power(int p) 
    
        long res = 1
        for (int i = 1; i <= p; ++i)
        
            res *= 2
            res %= mod; 
        
        return res % mod; 
    
      
    // Function to return the sum of squares of subsets 
    static long subset_square_sum(int A[]) 
    
        int n = A.length; 
      
        long ans = 0
      
        // Sqauaring the elements 
        // and adding it to ans 
        for (int i : A) 
        
            ans += (1 * i * i) % mod; 
            ans %= mod; 
        
        return (1 * ans * power(n - 1)) % mod; 
    
      
    // Driver code 
    public static void main (String[] args)
    
        int A[] = { 3, 7 }; 
      
        System.out.println(subset_square_sum(A)); 
    
}
  
// This code is contributed by AnkitRai01

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 implementation of the approach
mod = 10**9 + 7
  
# Function to return (2^P % mod)
def power(p):
  
    res = 1
    for i in range(1, p + 1):
        res *= 2
        res %= mod
  
    return res % mod
  
# Function to return the sum of
# squares of subsets
def subset_square_sum(A):
  
    n = len(A)
  
    ans = 0
  
    # Squaring the elements
    # and adding it to ans
    for i in A:
        ans += i * i % mod
        ans %= mod
  
    return ans * power(n - 1) % mod
  
# Driver code
A = [3, 7]
  
print(subset_square_sum(A))
  
# This code is contributed by Mohit Kumar

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation of the approach
using System;
      
class GFG 
{
    static readonly int mod = (int)(1e9 + 7); 
      
    // Function to return (2^P % mod) 
    static long power(int p) 
    
        long res = 1; 
        for (int i = 1; i <= p; ++i)
        
            res *= 2; 
            res %= mod; 
        
        return res % mod; 
    
      
    // Function to return the sum of squares of subsets 
    static long subset_square_sum(int []A) 
    
        int n = A.Length; 
      
        long ans = 0; 
      
        // Sqauaring the elements 
        // and adding it to ans 
        foreach (int i in A) 
        
            ans += (1 * i * i) % mod; 
            ans %= mod; 
        
        return (1 * ans * power(n - 1)) % mod; 
    
      
    // Driver code 
    public static void Main (String[] args)
    
        int []A = { 3, 7 }; 
      
        Console.WriteLine(subset_square_sum(A)); 
    
}
      
// This code is contributed by 29AjayKumar

chevron_right


Output:

116

Time Complexity: O(N)



My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.