Sum of range in a series of first odd then even natural numbers

• Difficulty Level : Medium
• Last Updated : 22 Mar, 2021

The sequence first consists of all the odd numbers starting from 1 to n and then remaining even numbers starting 2 up to n. Let’s suppose we have n as 1000. Then the sequence becomes 1 3 5 7….999 2 4 6….1000
We are given a range (L, R), we need to find sum of numbers of this sequence in given range.
Note: Here the range is given as (L, R) L and R are included in the range
Examples:

Input  : n = 10
Range 1 6
Output : 27
Explanation:
Sequence is 1 3 5 7 9 2 4 6 8 10
Sum in range (2, 6)
= 1 + 3 + 5 + 7 + 9 + 2
= 27

Input  : n = 5
Range 1 2
Output : 4
Explanation:
sequence is 1 3 5 2 4
sum = 1 + 3 = 4

The idea is to first find sum of numbers before left(excluding left), then find sum of numbers before right (including right). We get result as second sum minus first sum.
How to find sum till a limit?
We first count how many odd numbers are there, then we use formulas for sum of odd natural numbers and sum of even natural numbers to find the result.
How to find count of odd numbers?

• If n is odd then the number of odd numbers are ((n/2) + 1)
• If n is even then number of odd numbers are (n/2)

By simple observation, we get the number of odd numbers is ceil(n/2). So, the number of even numbers are n – ceil(n/2).

• Sum of first N odd numbers is (N^2)

• Sum of first N even numbers is (N^2) + N

For a given number x how will we find the sum in the sequence from 1 to x?
let’s suppose x is less than the number of odd numbers.

• Then we simply return (x*x)

If the x is greater then the number of odd numbers

• var = x-odd;

• That means we need first var even numbers

• we return (odd*odd) + (var*var) + var;

C++

 // CPP program to find sum in the given range in// the sequence 1 3 5 7.....N 2 4 6...N-1#include using namespace std; // For our convenience#define ll long long // Function that returns sum// in the range 1 to x in the// sequence 1 3 5 7.....N 2 4 6...N-1ll sumTillX(ll x, ll n){    // number of odd numbers    ll odd = ceil(n / 2.0);     if (x <= odd)       return x * x;     // number of extra even    // numbers required    ll even = x - odd;     return ((odd * odd) + (even * even) + even);} int rangeSum(int N, int L, int R){   return sumTillX(R, N) - sumTillX(L-1, N);} // Driver codeint main(){    ll N = 10, L = 1, R = 6;       cout << rangeSum(N, L, R);    return 0;}

Java

 // Java program to find// sum in the given// range in the sequence// 1 3 5 7.....N// 2 4 6...N-1 class GFG {         // Function that returns sum    // in the range 1 to x in the    // sequence 1 3 5 7.....N 2 4 6...N-1    static double sumTillX(double x,                           double n)    {                 // number of odd numbers        double odd = Math.ceil(n / 2.0);             if (x <= odd)            return x * x;             // number of extra even        // numbers required        double even = x - odd;             return ((odd * odd) + (even *                       even) + even);    }         static double rangeSum(double N,                           double L,                           double R)    {        return sumTillX(R, N) -               sumTillX(L-1, N);    }         // Driver Code    public static void main(String args[])    {        long N = 10, L = 1, R = 6;        int n = 101;        System.out.println((int)rangeSum(N, L, R));             }} // This code is contributed by Sam007

Python 3

 # Python 3 program to find sum in the# given range in the sequence 1 3 5 7# .....N 2 4 6...N-1import math # For our convenience#define ll long long # Function that returns sum in the# range 1 to x in the sequence# 1 3 5 7.....N 2 4 6...N-1def sumTillX(x, n):     # number of odd numbers    odd = math.ceil(n / 2.0)     if (x <= odd):        return x * x;     # number of extra even    # numbers required    even = x - odd;     return ((odd * odd) +            (even * even) + even);  def rangeSum(N, L, R):     return (sumTillX(R, N) -                 sumTillX(L-1, N)); # Driver codeN = 10L = 1R = 6print(rangeSum(N, L, R)) # This code is contributed by# Smitha

C#

 // C# program to find sum in the given// range in the sequence 1 3 5 7.....N// 2 4 6...N-1using System; public class GFG {             // Function that returns sum    // in the range 1 to x in the    // sequence 1 3 5 7.....N 2 4 6...N-1    static double sumTillX(double x, double n)    {                 // number of odd numbers        double odd = Math.Ceiling(n / 2.0);             if (x <= odd)            return x * x;             // number of extra even        // numbers required        double even = x - odd;             return ((odd * odd) + (even * even)                                    + even);    }         static double rangeSum(double N, double L,                                       double R)    {        return sumTillX(R, N) - sumTillX(L-1, N);    }         // Driver code    public static void Main()    {        long N = 10, L = 1, R = 6;        Console.Write(rangeSum(N, L, R));    }} // This code is contributed by Sam007.



Javascript


Output:
27

My Personal Notes arrow_drop_up