Sum of numbers in the Kth level of a Fibonacci triangle
Given a number K, the task is to find the sum of numbers at the Kth level of the Fibonacci triangle.
Examples:
Input: K = 3 Output: 10 Explanation: Fibonacci triangle till level 3: 0 1 1 2 3 5 Sum at 3rd level = 2 + 3 + 5 = 10 Input: K = 2 Output: 2 Explanation: Fibonacci triangle till level 3: 0 1 1 Sum at 3rd level = 1 + 1 = 2
Approach:
- Till Kth level, i.e. from level [1, K-1], count of Fibonacci numbers already used can be computed as:
cnt = N(Level 1) + N(Level 2) + N(Level 3) + ... + N(Level K-1) = 1 + 2 + 3 + ... + (K-1) = K*(K-1)/2
- Also, we know that the Kth level will contain K Fibonacci numbers.
- Therefore we can find the numbers in the Kth level as Fibonacci numbers in the range [(cnt + 1), (cnt + 1 + K)].
- We can find the sum of Fibonacci numbers in a range in O(1) time using Binet’s Formula.
Below is the implementation of the above approach:
C++
// C++ implementation to find // the Sum of numbers in the // Kth level of a Fibonacci triangle #include <bits/stdc++.h> using namespace std; #define MAX 1000000 // Function to return // the nth Fibonacci number int fib( int n) { double phi = (1 + sqrt (5)) / 2; return round( pow (phi, n) / sqrt (5)); } // Function to return // the required sum of the array int calculateSum( int l, int r) { // Using our deduced result int sum = fib(r + 2) - fib(l + 1); return sum; } // Function to return the sum of // fibonacci in the Kth array int sumFibonacci( int k) { // Count of fibonacci which are in // the arrays from 1 to k - 1 int l = (k * (k - 1)) / 2; int r = l + k; int sum = calculateSum(l, r - 1); return sum; } // Driver code int main() { int k = 3; cout << sumFibonacci(k); return 0; } |
Java
// Java implementation to find // the Sum of numbers in the // Kth level of a Fibonacci triangle import java.util.*; class GFG { // Function to return // the nth Fibonacci number static int fib( int n) { double phi = ( 1 + Math.sqrt( 5 )) / 2 ; return ( int )Math.round(Math.pow(phi, n) / Math.sqrt( 5 )); } // Function to return // the required sum of the array static int calculateSum( int l, int r) { // Using our deduced result int sum = fib(r + 2 ) - fib(l + 1 ); return sum; } // Function to return the sum of // fibonacci in the Kth array static int sumFibonacci( int k) { // Count of fibonacci which are in // the arrays from 1 to k - 1 int l = (k * (k - 1 )) / 2 ; int r = l + k; int sum = calculateSum(l, r - 1 ); return sum; } // Driver code public static void main(String args[]) { int k = 3 ; System.out.println(sumFibonacci(k)); } } // This code is contributed by AbhiThakur |
Python3
# Python3 implementation to find # the Sum of numbers in the # Kth level of a Fibonacci triangle import math MAX = 1000000 # Function to return # the nth Fibonacci number def fib(n): phi = ( 1 + math.sqrt( 5 )) / 2 return round ( pow (phi, n) / math.sqrt( 5 )) # Function to return # the required sum of the array def calculateSum(l, r): # Using our deduced result sum = fib(r + 2 ) - fib(l + 1 ) return sum # Function to return the sum of # fibonacci in the Kth array def sumFibonacci(k) : # Count of fibonacci which are in # the arrays from 1 to k - 1 l = (k * (k - 1 )) / 2 r = l + k sum = calculateSum(l, r - 1 ) return sum # Driver code k = 3 print (sumFibonacci(k)) # This code is contributed by Sanjit_Prasad |
C#
// C# implementation to find // the Sum of numbers in the // Kth level of a Fibonacci triangle using System; class GFG { // Function to return // the nth Fibonacci number static int fib( int n) { double phi = (1 + Math.Sqrt(5)) / 2; return ( int )Math.Round(Math.Pow(phi, n) / Math.Sqrt(5)); } // Function to return // the required sum of the array static int calculateSum( int l, int r) { // Using our deduced result int sum = fib(r + 2) - fib(l + 1); return sum; } // Function to return the sum of // fibonacci in the Kth array static int sumFibonacci( int k) { // Count of fibonacci which are in // the arrays from 1 to k - 1 int l = (k * (k - 1)) / 2; int r = l + k; int sum = calculateSum(l, r - 1); return sum; } // Driver code public static void Main() { int k = 3; Console.Write(sumFibonacci(k)); } } // This code is contributed by mohit kumar 29 |
Javascript
<script> // Javascript implementation to find // the Sum of numbers in the // Kth level of a Fibonacci triangle // Function to return // the nth Fibonacci number function fib(n) { var phi = (1 + Math.sqrt(5)) / 2; return parseInt( Math.round (Math.pow(phi, n) / Math.sqrt(5))); } // Function to return // the required sum of the array function calculateSum(l , r) { // Using our deduced result var sum = fib(r + 2) - fib(l + 1); return sum; } // Function to return the sum of // fibonacci in the Kth array function sumFibonacci(k) { // Count of fibonacci which are in // the arrays from 1 to k - 1 var l = (k * (k - 1)) / 2; var r = l + k; var sum = calculateSum(l, r - 1); return sum; } // Driver code var k = 3; document.write(sumFibonacci(k)); // This code is contributed by todaysgaurav </script> |
Output:
10
Time Complexity: O((log n) + (n1/2))
Auxiliary Space: O(1)
Please Login to comment...