Skip to content
Related Articles
Sum of nodes in the right view of the given binary tree
• Difficulty Level : Easy
• Last Updated : 20 Sep, 2019

Given a binary tree, the task is to find the sum of the nodes which are visible in the right view. The right view of a binary tree is the set of nodes visible when the tree is viewed from the right.

Examples:

```Input:
1
/  \
2    3
/ \    \
4   5    6
Output: 10
1 + 3 + 6 = 10

Input:
1
/  \
2      3
\
4
\
5
\
6
Output: 19
```

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Approach: The problem can be solved using simple recursive traversal. We can keep track of the level of a node by passing a parameter to all the recursive calls. The idea is to keep track of the maximum level also and traverse the tree in a manner that the right subtree is visited before the left subtree. Whenever a node whose level is more than the maximum level so far is encountered, add the value of the node to the sum because it is the last node in its level (Note that the right subtree is traversed before the left subtree).

Below is the implementation of the above approach:

## C++

 `// C++ implementation of the approach``#include ``using` `namespace` `std;`` ` `class` `Node {``public``:``    ``int` `data;``    ``Node *left, *right;``};`` ` `// A utility function to create``// a new Binary Tree Node``Node* newNode(``int` `item)``{``    ``Node* temp = ``new` `Node();``    ``temp->data = item;``    ``temp->left = temp->right = NULL;``    ``return` `temp;``}`` ` `// Recursive function to find the sum of nodes``// of the right view of the given binary tree``void` `sumRightViewUtil(Node* root, ``int` `level,``                      ``int``* max_level, ``int``* sum)``{``    ``// Base Case``    ``if` `(root == NULL)``        ``return``;`` ` `    ``// If this is the last Node of its level``    ``if` `(*max_level < level) {``        ``*sum += root->data;``        ``*max_level = level;``    ``}`` ` `    ``// Recur for left and right subtrees``    ``sumRightViewUtil(root->right, level + 1, max_level, sum);``    ``sumRightViewUtil(root->left, level + 1, max_level, sum);``}`` ` `// A wrapper over sumRightViewUtil()``void` `sumRightView(Node* root)``{``    ``int` `max_level = 0;``    ``int` `sum = 0;``    ``sumRightViewUtil(root, 1, &max_level, &sum);``    ``cout << sum;``}`` ` `// Driver code``int` `main()``{``    ``Node* root = newNode(12);``    ``root->left = newNode(10);``    ``root->right = newNode(30);``    ``root->right->left = newNode(25);``    ``root->right->right = newNode(40);`` ` `    ``sumRightView(root);`` ` `    ``return` `0;``}`

## Java

 `// Java implementation of the approach`` ` `// Class for a node of the tree``class` `Node {``    ``int` `data;``    ``Node left, right;`` ` `    ``public` `Node(``int` `item)``    ``{``        ``data = item;``        ``left = right = ``null``;``    ``}``}`` ` `class` `BinaryTree {``    ``Node root;``    ``static` `int` `max_level = ``0``;``    ``static` `int` `sum = ``0``;`` ` `    ``// Recursive function to find the sum of nodes``    ``// of the right view of the given binary tree``    ``void` `sumRightViewUtil(Node node, ``int` `level)``    ``{``        ``// Base Case``        ``if` `(node == ``null``)``            ``return``;`` ` `        ``// If this is the last node of its level``        ``if` `(max_level < level) {``            ``sum += node.data;``            ``max_level = level;``        ``}`` ` `        ``// Recur for left and right subtrees``        ``sumRightViewUtil(node.right, level + ``1``);``        ``sumRightViewUtil(node.left, level + ``1``);``    ``}`` ` `    ``// A wrapper over sumRightViewUtil()``    ``void` `sumRightView()``    ``{`` ` `        ``sumRightViewUtil(root, ``1``);``        ``System.out.print(sum);``    ``}`` ` `    ``// Driver code``    ``public` `static` `void` `main(String args[])``    ``{`` ` `        ``BinaryTree tree = ``new` `BinaryTree();``        ``tree.root = ``new` `Node(``12``);``        ``tree.root.left = ``new` `Node(``10``);``        ``tree.root.right = ``new` `Node(``30``);``        ``tree.root.right.left = ``new` `Node(``25``);``        ``tree.root.right.right = ``new` `Node(``40``);`` ` `        ``tree.sumRightView();``    ``}``}`

## Python3

 `# Python3 implementation of the approach`` ` `# A binary tree node ``class` `Node: `` ` `    ``# Constructor to create a new node ``    ``def` `__init__(``self``, data): ``        ``self``.data ``=` `data ``        ``self``.left ``=` `None``        ``self``.right ``=` `None`` ` ` ` `# Recursive function to find the sum of nodes ``# of the right view of the given binary tree``def` `sumRightViewUtil(root, level, max_level, ``sum``): ``     ` `    ``# Base Case ``    ``if` `root ``is` `None``: ``        ``return`` ` `    ``# If this is the last node of its level ``    ``if` `(max_level[``0``] < level): ``        ``sum``[``0``]``+``=` `root.data ``        ``max_level[``0``] ``=` `level `` ` `    ``# Recur for left and right subtree ``    ``sumRightViewUtil(root.right, level ``+` `1``, max_level, ``sum``) ``    ``sumRightViewUtil(root.left, level ``+` `1``, max_level, ``sum``) ``     ` ` ` `# A wrapper over sumRightViewUtil() ``def` `sumRightView(root): ``    ``max_level ``=` `[``0``] ``    ``sum` `=``[``0``]``    ``sumRightViewUtil(root, ``1``, max_level, ``sum``) ``    ``print``(``sum``[``0``])`` ` ` ` `# Driver code``root ``=` `Node(``12``) ``root.left ``=` `Node(``10``) ``root.right ``=` `Node(``30``) ``root.right.left ``=` `Node(``25``) ``root.right.right ``=` `Node(``40``) ``sumRightView(root)`

## C#

 `// C# implementation of the approach``using` `System;`` ` `// Class for a node of the tree``public` `class` `Node {``    ``public` `int` `data;``    ``public` `Node left, right;`` ` `    ``public` `Node(``int` `item)``    ``{``        ``data = item;``        ``left = right = ``null``;``    ``}``}`` ` `public` `class` `BinaryTree {``    ``public` `Node root;``    ``public` `static` `int` `max_level = 0;``    ``public` `static` `int` `sum = 0;`` ` `    ``// Recursive function to find the sum of nodes``    ``// of the right view of the given binary tree``    ``public` `virtual` `void` `sumrightViewUtil(Node node, ``int` `level)``    ``{``        ``// Base Case``        ``if` `(node == ``null``) {``            ``return``;``        ``}`` ` `        ``// If this is the last node of its level``        ``if` `(max_level < level) {``            ``sum += node.data;``            ``max_level = level;``        ``}`` ` `        ``// Recur for left and right subtrees``        ``sumrightViewUtil(node.right, level + 1);``        ``sumrightViewUtil(node.left, level + 1);``    ``}`` ` `    ``// A wrapper over sumrightViewUtil()``    ``public` `virtual` `void` `sumrightView()``    ``{``        ``sumrightViewUtil(root, 1);``        ``Console.Write(sum);``    ``}`` ` `    ``// Driver code``    ``public` `static` `void` `Main(``string``[] args)``    ``{``        ``BinaryTree tree = ``new` `BinaryTree();``        ``tree.root = ``new` `Node(12);``        ``tree.root.left = ``new` `Node(10);``        ``tree.root.right = ``new` `Node(30);``        ``tree.root.right.left = ``new` `Node(25);``        ``tree.root.right.right = ``new` `Node(40);`` ` `        ``tree.sumrightView();``    ``}``}`
Output:
```82
```

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with industry experts, please refer Geeks Classes Live

My Personal Notes arrow_drop_up