# Sum of (maximum element – minimum element) for all the subsets of an array.

Given an array arr[], the task is to compute the sum of (max{A} – min{A}) for every non-empty subset A of the array arr[].

Examples:

Input: arr[] = { 4, 7 }
Output: 3

There are three non-empty subsets: { 4 }, { 7 } and { 4, 7 }.
max({4}) – min({4}) = 0
max({7}) – min({7}) = 0
max({4, 7}) – min({4, 7}) = 7 – 4 = 3.

Sum = 0 + 0 + 3 = 3

Input: arr[] = { 4, 3, 1 }
Output: 9

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

A naive solution is to generate all subsets and traverse every subset to find the maximum and minimum element and add their difference to the current sum. The time complexity of this solution is O(n * 2n).

An efficient solution is based on a simple observation stated below.

For example, A = { 4, 3, 1 }
Let value to be added in the sum for every subset be V.

Subsets with max, min and V values:
{ 4 }, max = 4, min = 4 (V = 4 – 4)
{ 3 }, max = 3, min = 3 (V = 3 – 3)
{ 1 }, max = 1, min = 1 (V = 1 – 1)
{ 4, 3 }, max = 4, min = 3 (V = 4 – 3)
{ 4, 1 }, max = 4, min = 1 (V = 4 – 1)
{ 3, 1 }, max = 3, min = 1 (V = 3 – 1)
{ 4, 3, 1 }, max = 4, min = 1 (V = 4 – 1)

Sum of all V values
= (4 – 4) + (3 – 3) + (1 – 1) + (4 – 3) + (4 – 1) + (3 – 1) + (4 – 1)
= 0 + 0 + 0 + (4 – 3) + (4 – 1) + (3 – 1) + (4 – 1)
= (4 – 3) + (4 – 1) + (3 – 1) + (4 – 1)

First 3 ‘V’ values can be ignored since they evaluate to 0
(because they result from 1-sized subsets).

Rearranging the sum, we get:

= (4 – 3) + (4 – 1) + (3 – 1) + (4 – 1)
= (1 * 0 – 1 * 3) + (3 * 1 – 3 * 1) + (4 * 3 – 4 * 0)
= (1 * A – 1 * B) + (3 * C – 3 * D) + (4 * E – 4 * F)

where A = 0, B = 3, C = 1, D = 1, E = 3 and F = 0

If we closely look at the expression, instead of analyzing every subset, here we analyze every element of how many times it occurs as a minimum or a maximum element.

A = 0 implies that 1 doesn’t occur as a maximum element in any of the subsets.
B = 3 implies that 1 occurs as a minimum element in 3 subsets.
C = 1 implies that 3 occurs as a maximum element in 1 subset.
D = 1 implies that 3 occurs as a minimum element in 1 subset.
E = 3 implies that 4 occurs as a maximum element in 3 subsets.
F = 0 implies that 4 doesn’t occur as a minimum element in any of the subsets.

If we somehow know the count of subsets for every element in which it occurs as a maximum element and a minimum element then we can solve the problem in linear time, since the computation above is linear in nature.

Let A = { 6, 3, 89, 21, 4, 2, 7, 9 }
sorted(A) = { 2, 3, 4, 6, 7, 9, 21, 89 }

For example, we analyze element with value 6 (marked in bold). 3 elements are smaller than 6 and 4 elements are larger than 6. Therefore, if we think of all subsets in which 6 occurs with the 3 smaller elements, then in all those subsets 6 will be the maximum element. No of those subsets will be 23. Similar argument holds for 6 being the minimum element when it occurs with the 4 elements greater than 6.

Hence,
No of occurrences for an element as the maximum in all subsets = 2pos – 1
No of occurrences for an element as the minimum in all subsets = 2n – 1 – pos – 1

where pos is the index of the element in the sorted array.

Below is the implementation of the above approach.

## C++

 // C++ implementation of the above approach #include    #define ll long long    using namespace std;    const int mod = 1000000007;    // Function to return a^n % mod ll power(ll a, ll n) {     if (n == 0)         return 1;        ll p = power(a, n / 2) % mod;     p = (p * p) % mod;     if (n & 1) {         p = (p * a) % mod;     }     return p; }    // Compute sum of max(A) - min(A) for all subsets ll computeSum(int* arr, int n) {        // Sort the array.     sort(arr, arr + n);        ll sum = 0;     for (int i = 0; i < n; i++) {            // Maxs = 2^i - 1         ll maxs = (power(2, i) - 1 + mod) % mod;         maxs = (maxs * arr[i]) % mod;            // Mins = 2^(n-1-i) - 1         ll mins = (power(2, n - 1 - i) - 1 + mod) % mod;         mins = (mins * arr[i]) % mod;            ll V = (maxs - mins + mod) % mod;         sum = (sum + V) % mod;     }     return sum; }    // Driver code int main() {     int arr[] = { 4, 3, 1 };     int n = sizeof(arr) / sizeof(arr[0]);        cout << computeSum(arr, n);     return 0; }

## Java

 // Java implementation of the above approach import java.util.*;    class GFG  {    static int mod = 1000000007;        // Function to return a^n % mod     static long power(long a, long n)      {         if (n == 0)          {             return 1;         }            long p = power(a, n / 2) % mod;         p = (p * p) % mod;         if (n == 1)          {             p = (p * a) % mod;         }         return p;     }        // Compute sum of max(A) - min(A) for all subsets     static long computeSum(int[] arr, int n)      {            // Sort the array.         Arrays.sort(arr);            long sum = 0;         for (int i = 0; i < n; i++)          {                // Maxs = 2^i - 1             long maxs = (power(2, i) - 1 + mod) % mod;             maxs = (maxs * arr[i]) % mod;                // Mins = 2^(n-1-i) - 1             long mins = (power(2, n - 1 - i) - 1 + mod) % mod;             mins = (mins * arr[i]) % mod;                long V = (maxs - mins + mod) % mod;             sum = (sum + V) % mod;         }         return sum;     }        // Driver code     public static void main(String[] args)      {         int arr[] = {4, 3, 1};         int n = arr.length;         System.out.println(computeSum(arr, n));     } }    // This code has been contributed by 29AjayKumar

## Python3

 # Python3 implementation of the  # above approach     # Function to return a^n % mod  def power(a, n):         if n == 0:         return 1        p = power(a, n // 2) % mod      p = (p * p) % mod      if n & 1 == 1:          p = (p * a) % mod             return p     # Compute sum of max(A) - min(A)  # for all subsets  def computeSum(arr, n):         # Sort the array.      arr.sort()        Sum = 0     for i in range(0, n):             # Maxs = 2^i - 1          maxs = (power(2, i) - 1 + mod) % mod          maxs = (maxs * arr[i]) % mod             # Mins = 2^(n-1-i) - 1          mins = (power(2, n - 1 - i) -                        1 + mod) % mod          mins = (mins * arr[i]) % mod             V = (maxs - mins + mod) % mod          Sum = (Sum + V) % mod             return Sum    # Driver code  if __name__ =="__main__":        mod = 1000000007     arr = [4, 3, 1]      n = len(arr)         print(computeSum(arr, n))     # This code is contributed # by Rituraj Jain

## C#

 // C# implementation of the above approach using System; using System.Collections;    class GFG  {    static int mod = 1000000007;        // Function to return a^n % mod     static long power(long a, long n)      {         if (n == 0)          {             return 1;         }            long p = power(a, n / 2) % mod;         p = (p * p) % mod;         if (n == 1)          {             p = (p * a) % mod;         }         return p;     }        // Compute sum of max(A) - min(A) for all subsets     static long computeSum(int []arr, int n)      {            // Sort the array.         Array.Sort(arr);            long sum = 0;         for (int i = 0; i < n; i++)          {                // Maxs = 2^i - 1             long maxs = (power(2, i) - 1 + mod) % mod;             maxs = (maxs * arr[i]) % mod;                // Mins = 2^(n-1-i) - 1             long mins = (power(2, n - 1 - i) - 1 + mod) % mod;             mins = (mins * arr[i]) % mod;                long V = (maxs - mins + mod) % mod;             sum = (sum + V) % mod;         }         return sum;     }        // Driver code     public static void Main()      {         int []arr = {4, 3, 1};         int n = arr.Length;         Console.WriteLine(computeSum(arr, n));     } }    // This code has been contributed by mits

## PHP



Output:

9

My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

1

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.