Skip to content
Related Articles

Related Articles

Sum of lengths of all 12 edges of any rectangular parallelepiped
  • Difficulty Level : Easy
  • Last Updated : 06 Nov, 2019

Given the area of three faces of the rectangular parallelepiped which has a common vertex. Our task is to find the sum of lengths of all 12 edges of this parallelepiped.

In geometry, a parallelepiped is a three-dimensional figure formed by six parallelograms. By analogy, it relates to a parallelogram just as a cube relates to a square or as a cuboid to a rectangle. A picture of a rectangular parallelepiped is shown below.

Examples:

Input: 1 1 1 
Output: 12

Input: 20 10 50
Output: 68

Approach: The area given are s1, s2 and s3 . Let a, b and c be the lengths of the sides that have one common vertex. Where s1 = a * b, s2 = b * c, s3 = c * a. It’s easy to find the length in terms of faces areas:  a = \sqrt{s1s3/s2} ,  b = \sqrt{s1s2/s3} ,  c = \sqrt{s2s3/s1} . The answer will be the summation of all the 4 sides, there are four sides that have lengths equal to a, b and c.



In the first example the given area s1 = 1, s2 = 1 and s3 = 1. So with the above approach, the value of a, b, c will come out to be 1. So the sum of the length of all 12 edges will be 4 * 3 = 12.

Below is the implementation of the above approach:

C++




// C++ program to illustrate
// the above problem
#include <bits/stdc++.h>
using namespace std;
  
// function to find the sum of
// all the edges of parallelepiped
double findEdges(double s1, double s2, double s3)
{
    // to calculate the length of one edge
    double a = sqrt(s1 * s2 / s3);
    double b = sqrt(s3 * s1 / s2);
    double c = sqrt(s3 * s2 / s1);
  
    // sum of all the edges of one side
    double sum = a + b + c;
  
    // net sum will be equal to the
    // summation of edges of all the sides
    return 4 * sum;
}
  
// Driver code
int main()
{
    // initialize the area of three
    // faces which has a common vertex
    double s1, s2, s3;
    s1 = 65, s2 = 156, s3 = 60;
  
    cout << findEdges(s1, s2, s3);
  
    return 0;
}

Java




// Java program to illustrate
// the above problem
  
import java.io.*;
  
class GFG {
    
// function to find the sum of
// all the edges of parallelepiped
static double findEdges(double s1, double s2, double s3)
{
    // to calculate the length of one edge
    double a = Math.sqrt(s1 * s2 / s3);
    double b = Math.sqrt(s3 * s1 / s2);
    double c = Math.sqrt(s3 * s2 / s1);
  
    // sum of all the edges of one side
    double sum = a + b + c;
  
    // net sum will be equal to the
    // summation of edges of all the sides
    return 4 * sum;
}
  
       // Driver code
  
    public static void main (String[] args) {
            // initialize the area of three
    // faces which has a common vertex
    double s1, s2, s3;
    s1 = 65; s2 = 156; s3 = 60;
  
    System.out.print(findEdges(s1, s2, s3));
    }
}
  
  
// this code is contributed by anuj_67..

Python3




import math
  
# Python3 program to illustrate
# the above problem
  
# function to find the sum of
# all the edges of parallelepiped
def findEdges(s1, s2, s3):
  
    # to calculate the length of one edge
    a = math.sqrt(s1 * s2 / s3)
    b = math.sqrt(s3 * s1 / s2)
    c = math.sqrt(s3 * s2 / s1)
  
    # sum of all the edges of one side
    sum = a + b + c
  
    # net sum will be equal to the
    # summation of edges of all the sides
    return 4 * sum
  
  
# Driver code
if __name__=='__main__':
      
# initialize the area of three
# faces which has a common vertex
    s1 = 65
    s2 = 156
    s3 = 60
  
    print(int(findEdges(s1, s2, s3)))
          
# This code is contributed by 
# Shivi_Aggarwal

C#




// C# program to illustrate
// the above problem
using System;
  
public class GFG{
      
// function to find the sum of
// all the edges of parallelepiped
static double findEdges(double s1, double s2, double s3)
{
    // to calculate the length of one edge
    double a = Math.Sqrt(s1 * s2 / s3);
    double b = Math.Sqrt(s3 * s1 / s2);
    double c = Math.Sqrt(s3 * s2 / s1);
  
    // sum of all the edges of one side
    double sum = a + b + c;
  
    // net sum will be equal to the
    // summation of edges of all the sides
    return 4 * sum;
}
  
// Driver code
  
    static public void Main (){
    // initialize the area of three
    // faces which has a common vertex
    double s1, s2, s3;
    s1 = 65; s2 = 156; s3 = 60;
  
    Console.WriteLine(findEdges(s1, s2, s3));
    }
}
  
  
// This code is contributed by anuj_67..

PHP




<?php
// PHP program to illustrate
// the above problem
  
// function to find the sum of
// all the edges of parallelepiped
function findEdges($s1, $s2, $s3)
{
    // to calculate the length of one edge
    $a = sqrt($s1 * $s2 / $s3);
    $b = sqrt($s3 * $s1 / $s2);
    $c = sqrt($s3 * $s2 / $s1);
  
    // sum of all the edges of one side
    $sum = $a + $b + $c;
  
    // net sum will be equal to the
    // summation of edges of all the sides
    return 4 * $sum;
}
  
// Driver code
  
// initialize the area of three
// faces which has a common vertex
$s1; $s2; $s3;
$s1 = 65; $s2 = 156; $s3 = 60;
  
echo findEdges($s1, $s2, $s3);
  
// This code is contributed by Shashank
?>
Output:
120

Reference: https://en.wikipedia.org/wiki/Parallelepiped

Attention reader! Don’t stop learning now. Get hold of all the important mathematical concepts for competitive programming with the Essential Maths for CP Course at a student-friendly price. To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

My Personal Notes arrow_drop_up
Recommended Articles
Page :