# Sum of integers upto N with given unit digit (Set 2)

Given two integer N and D where 1 ≤ N ≤ 1018, the task is to find the sum of all the integers from 1 to N whose unit digit is D.

Examples:

Input: N = 30, D = 3
Output: 39
3 + 13 + 23 = 39

Input: N = 5, D = 7
Output: 0

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Approach: In Set 1 we saw two basic approaches to find the required sum, but the complexity is O(N) which will take more time for larger N. Here’s an even efficient approach, suppose we are given N = 30 and D = 3:

sum = 3 + 13 + 23
sum = 3 + (10 + 3) + (20 + 3)
sum = 3 * (3) + (10 + 20)

From the above observation, we can find the sum following the steps below:

• Decrement N until N % 10 != D.
• Find K = N / 10.
• Now, sum = (K + 1) * D + (((K * 10) + (10 * K * K)) / 2).

Below is the implementation of the above approach:

## C++

 `// C++ implementation of the approach ` `#include ` `using` `namespace` `std; ` `#define ll long long int ` ` `  `// Function to return the required sum ` `ll getSum(ll n, ``int` `d) ` `{ ` `    ``if` `(n < d) ` `        ``return` `0; ` ` `  `    ``// Decrement N ` `    ``while` `(n % 10 != d) ` `        ``n--; ` ` `  `    ``ll k = n / 10; ` ` `  `    ``return` `(k + 1) * d + (k * 10 + 10 * k * k) / 2; ` `} ` ` `  `// Driver code ` `int` `main() ` `{ ` `    ``ll n = 30; ` `    ``int` `d = 3; ` `    ``cout << getSum(n, d); ` `    ``return` `0; ` `} `

## Java

 `// Java  implementation of the approach ` ` `  `import` `java.io.*; ` ` `  `class` `GFG { ` ` `  ` `  `// Function to return the required sum ` `static` `long` `getSum(``long` `n, ``int` `d) ` `{ ` `    ``if` `(n < d) ` `        ``return` `0``; ` ` `  `    ``// Decrement N ` `    ``while` `(n % ``10` `!= d) ` `        ``n--; ` ` `  `    ``long` `k = n / ``10``; ` ` `  `    ``return` `(k + ``1``) * d + (k * ``10` `+ ``10` `* k * k) / ``2``; ` `} ` ` `  `// Driver code ` ` `  `    ``public` `static` `void` `main (String[] args) { ` `     ``long` `n = ``30``; ` `    ``int` `d = ``3``; ` `    ``System.out.println(getSum(n, d));    } ` `} ` `//This code is contributed by inder_verma.. `

## Python3

 `# Python3 implementation of the approach  ` ` `  `# Function to return the required sum  ` `def` `getSum(n, d) : ` `     `  `    ``if` `(n < d) : ` `        ``return` `0` ` `  `    ``# Decrement N  ` `    ``while` `(n ``%` `10` `!``=` `d) : ` `        ``n ``-``=` `1` ` `  `    ``k ``=` `n ``/``/` `10` ` `  `    ``return` `((k ``+` `1``) ``*` `d ``+`  `            ``(k ``*` `10` `+` `10` `*` `k ``*` `k) ``/``/` `2``) ` ` `  `# Driver code  ` `if` `__name__ ``=``=` `"__main__"` `:  ` ` `  `    ``n ``=` `30` `    ``d ``=` `3` `    ``print``(getSum(n, d))  ` ` `  `# This code is contributed by Ryuga `

## C#

 `// C# implementation of the approach ` ` `  ` `  `class` `GFG { ` ` `  ` `  `// Function to return the required sum ` `static` `int` `getSum(``int` `n, ``int` `d) ` `{ ` `    ``if` `(n < d) ` `        ``return` `0; ` ` `  `    ``// Decrement N ` `    ``while` `(n % 10 != d) ` `        ``n--; ` ` `  `    ``int` `k = n / 10; ` ` `  `    ``return` `(k + 1) * d + (k * 10 + 10 * k * k) / 2; ` `} ` ` `  `// Driver code ` ` `  `    ``public` `static` `void` `Main () { ` `    ``int` `n = 30; ` `    ``int` `d = 3; ` `    ``System.Console.WriteLine(getSum(n, d)); } ` `} ` `//This code is contributed by mits. `

## PHP

 ` `

Output:

```39
```

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.