# Sum of elements in an array whose difference with the mean of another array is less than k

Given two unsorted arrays arr1[] and arr2[]. Find the sum of elements from arr1[] whose difference with the mean of arr2[] is < k.
Examples:

Input: arr1[] = {1, 2, 3, 4, 7, 9}, arr2[] = {0, 1, 2, 1, 1, 4}, k = 2
Output:
Mean of 2nd array is 1.5.
Hence, 1, 2, 3 are the only elements
whose difference with mean is less than 2
Input: arr1[] = {5, 10, 2, 6, 1, 8, 6, 12}, arr2[] = {6, 5, 11, 4, 2, 3, 7}, k = 4
Output:

Approach: Calculate the mean of the second array and then traverse the first array and calculate the sum of those elements whose absolute difference with mean is < k.
Below is the implementation of the above approach:

## C++

 `// C++ implementation of the approach` `#include ` `using` `namespace` `std;`   `// Function for finding sum of elements` `// whose diff with mean is not more than k` `int` `findSumofEle(``int` `arr1[], ``int` `m,` `                 ``int` `arr2[], ``int` `n, ``int` `k)` `{` `    ``float` `arraySum = 0;`   `    ``// Find the mean of second array` `    ``for` `(``int` `i = 0; i < n; i++)` `        ``arraySum += arr2[i];` `    ``float` `mean = arraySum / n;`   `    ``// Find sum of elements from array1` `    ``// whose difference with mean in not more than k` `    ``int` `sumOfElements = 0;` `    ``float` `difference;`   `    ``for` `(``int` `i = 0; i < m; i++) {` `        ``difference = arr1[i] - mean;` `        ``if` `((difference < 0) && (k > (-1) * difference)) {` `            ``sumOfElements += arr1[i];` `        ``}` `        ``if` `((difference >= 0) && (k > difference)) {` `            ``sumOfElements += arr1[i];` `        ``}` `    ``}`   `    ``// Return result` `    ``return` `sumOfElements;` `}`   `// Driver code` `int` `main()` `{` `    ``int` `arr1[] = { 1, 2, 3, 4, 7, 9 };` `    ``int` `arr2[] = { 0, 1, 2, 1, 1, 4 };` `    ``int` `k = 2;` `    ``int` `m, n;`   `    ``m = ``sizeof``(arr1) / ``sizeof``(arr1[0]);` `    ``n = ``sizeof``(arr2) / ``sizeof``(arr2[0]);`   `    ``cout << findSumofEle(arr1, m, arr2, n, k);`   `    ``return` `0;` `}`

## Java

 `// Java implementation of the approach ` `class` `GFG` `{` `    `  `// Function for finding sum of elements ` `// whose diff with mean is not more than k ` `static` `int` `findSumofEle(``int` `[]arr1, ``int` `m, ` `                ``int` `[]arr2, ``int` `n, ``int` `k) ` `{ ` `    ``float` `arraySum = ``0``; `   `    ``// Find the mean of second array ` `    ``for` `(``int` `i = ``0``; i < n; i++) ` `        ``arraySum += arr2[i]; ` `    ``float` `mean = arraySum / n; `   `    ``// Find sum of elements from array1 ` `    ``// whose difference with mean in not more than k ` `    ``int` `sumOfElements = ``0``; ` `    ``float` `difference = ``0``; `   `    ``for` `(``int` `i = ``0``; i < m; i++) ` `    ``{ ` `        ``difference = arr1[i] - mean; ` `        ``if` `((difference < ``0``) && (k > (-``1``) * difference)) ` `        ``{ ` `            ``sumOfElements += arr1[i]; ` `        ``} ` `        ``if` `((difference >= ``0``) && (k > difference)) ` `        ``{ ` `            ``sumOfElements += arr1[i]; ` `        ``} ` `    ``} `   `    ``// Return result ` `    ``return` `sumOfElements; ` `} `   `// Driver code ` `public` `static` `void` `main (String[] args)` `{` `    ``int` `[]arr1 = { ``1``, ``2``, ``3``, ``4``, ``7``, ``9` `}; ` `    ``int` `[]arr2 = { ``0``, ``1``, ``2``, ``1``, ``1``, ``4` `}; ` `    ``int` `k = ``2``; `   `    ``int` `m = arr1.length; ` `    ``int` `n = arr2.length; `   `    ``System.out.println(findSumofEle(arr1, m, arr2, n, k)); ` `} ` `}`   `// This code is contributed by mits`

## Python3

 `# Python3 implementation of the approach`   `# Function for finding sum of elements` `# whose diff with mean is not more than k` `def` `findSumofEle(arr1, m, arr2, n, k):` `    ``arraySum ``=` `0`   `    ``# Find the mean of second array` `    ``for` `i ``in` `range``(n):` `        ``arraySum ``+``=` `arr2[i]` `    ``mean ``=` `arraySum ``/` `n`   `    ``# Find sum of elements from array1` `    ``# whose difference with mean ` `    ``# is not more than k` `    ``sumOfElements ``=` `0` `    ``difference ``=` `0`   `    ``for` `i ``in` `range``(m):`   `        ``difference ``=` `arr1[i] ``-` `mean`   `        ``if` `((difference < ``0``) ``and` `(k > (``-``1``) ``*` `difference)):` `            ``sumOfElements ``+``=` `arr1[i]`   `        ``if` `((difference >``=` `0``) ``and` `(k > difference)):` `            ``sumOfElements ``+``=` `arr1[i]`   `    ``# Return result` `    ``return` `sumOfElements`   `# Driver code` `arr1 ``=` `[ ``1``, ``2``, ``3``, ``4``, ``7``, ``9``]` `arr2 ``=` `[ ``0``, ``1``, ``2``, ``1``, ``1``, ``4``]` `k ``=` `2`   `m ``=` `len``(arr1)` `n ``=` `len``(arr2)`   `print``(findSumofEle(arr1, m, arr2, n, k))`   `# This code is contributed by mohit kumar`

## C#

 `// C# implementation of the approach ` `using` `System; `   `class` `GFG` `{` `    `  `// Function for finding sum of elements ` `// whose diff with mean is not more than k ` `static` `int` `findSumofEle(``int` `[]arr1, ``int` `m, ` `                ``int` `[]arr2, ``int` `n, ``int` `k) ` `{ ` `    ``float` `arraySum = 0; `   `    ``// Find the mean of second array ` `    ``for` `(``int` `i = 0; i < n; i++) ` `        ``arraySum += arr2[i]; ` `    ``float` `mean = arraySum / n; `   `    ``// Find sum of elements from array1 ` `    ``// whose difference with mean in not more than k ` `    ``int` `sumOfElements = 0; ` `    ``float` `difference = 0; `   `    ``for` `(``int` `i = 0; i < m; i++) ` `    ``{ ` `        ``difference = arr1[i] - mean; ` `        ``if` `((difference < 0) && (k > (-1) * difference)) ` `        ``{ ` `            ``sumOfElements += arr1[i]; ` `        ``} ` `        ``if` `((difference >= 0) && (k > difference)) ` `        ``{ ` `            ``sumOfElements += arr1[i]; ` `        ``} ` `    ``} `   `    ``// Return result ` `    ``return` `sumOfElements; ` `} `   `// Driver code ` `static` `void` `Main() ` `{ ` `    ``int` `[]arr1 = { 1, 2, 3, 4, 7, 9 }; ` `    ``int` `[]arr2 = { 0, 1, 2, 1, 1, 4 }; ` `    ``int` `k = 2; `   `    ``int` `m = arr1.Length; ` `    ``int` `n = arr2.Length; `   `    ``Console.WriteLine(findSumofEle(arr1, m, arr2, n, k)); ` `} ` `}`   `// This code is contributed by mits`

## PHP

 ` (-1) * ``\$difference``))` `        ``{ ` `            ``\$sumOfElements` `+= ``\$arr1``[``\$i``]; ` `        ``} ` `        ``if` `((``\$difference` `>= 0) && ` `            ``(``\$k` `> ``\$difference``))` `        ``{ ` `            ``\$sumOfElements` `+= ``\$arr1``[``\$i``]; ` `        ``} ` `    ``} `   `    ``// Return result ` `    ``return` `\$sumOfElements``; ` `} `   `// Driver code ` `\$arr1` `= ``array``( 1, 2, 3, 4, 7, 9 ); ` `\$arr2` `= ``array``( 0, 1, 2, 1, 1, 4 ); ` `\$k` `= 2; `   `\$m` `= ``count``(``\$arr1``);` `\$n` `= ``count``(``\$arr2``);`   `print``(findSumofEle(``\$arr1``, ``\$m``, ` `                   ``\$arr2``, ``\$n``, ``\$k``)); `   `// This code is contributed by Ryuga ` `?>`

## Javascript

 ``

Output:

`6`

Time Complexity: O(n + m)
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!

Previous
Next