Sum of digits written in different bases from 2 to n-1

Given a number n, find the sum of digits of n when represented in different bases from 2 to n-1.

Examples:

Input : 5
Output : 2 3 2
Representation of 5 is 101, 12, 11 in bases 2 , 3 , 4 .

Input : 7
Output : 3 3 4 3 2
  1. As the given question wants the sum of digits in different bases, first we have to calculate the given number of different bases and add each digit to the number of different bases.
  2. So, to calculate each number’s representation we will take the mod of given number by the base in which we want to represent that number.
  3. Then, we have to add all those mod values as the mod values obtained will represent that number in that base.
  4. Finally, the sum of those mod values gives the sum of digits of that number.

Below are implementations of this approach



C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// CPP program to find sum of digits of
// n in different bases from 2 to n-1.
#include <bits/stdc++.h>
using namespace std;
  
// function to calculate sum of 
// digit for a given base
int solve(int n, int base)
{
    // Sum of digits
    int result = 0 ;
      
    // Calculating the number (n) by
    // taking mod with the base and adding 
    // remainder to the result and 
    // parallelly reducing the num value .
    while (n > 0)
    {
        int remainder = n % base ;
        result = result + remainder ; 
        n = n / base;
    }
      
    // returning the result 
    return result ;
}
  
void printSumsOfDigits(int n)
{
    // function calling for multiple bases
    for (int base = 2 ; base < n ; ++base)    
        cout << solve(n, base) <<" "
}
  
// Driver program
int main()
{
    int n = 8;
    printSumsOfDigits(n);
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to find sum of digits of
// n in different bases from 2 to n-1.
class GFG
{
// function to calculate sum of 
// digit for a given base
static int solve(int n, int base)
{
    // Sum of digits
    int result = 0 ;
      
    // Calculating the number (n) by
    // taking mod with the base and adding 
    // remainder to the result and 
    // parallelly reducing the num value .
    while (n > 0)
    {
        int remainder = n % base ;
        result = result + remainder ; 
        n = n / base;
    }
      
    // returning the result 
    return result ;
}
  
static void printSumsOfDigits(int n)
{
    // function calling for multiple bases
    for (int base = 2 ; base < n ; ++base) 
        System.out.print(solve(n, base)+" "); 
}
  
// Driver Code
public static void main(String[] args)
{
    int n = 8;
    printSumsOfDigits(n);
}
}
// This code is contributed by Smitha

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python program to find sum of digits of
# n in different bases from 2 to n-1.
   
# def to calculate sum of 
# digit for a given base
def solve(n, base) :
       
    # Sum of digits
    result = 0 
       
    # Calculating the number (n) by
    # taking mod with the base and adding 
    # remainder to the result and 
    # parallelly reducing the num value .
    while (n > 0) :
      
        remainder = n % base 
        result = result + remainder  
        n = int(n / base)
       
    # returning the result 
    return result 
   
def printSumsOfDigits(n) :
       
    # def calling for 
    # multiple bases
    for base in range(2, n) :
        print (solve(n, base), end=" ")
  
# Driver code
n = 8
printSumsOfDigits(n)
   
# This code is contributed by Manish Shaw
# (manishshaw1)

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to find the sum of digits of
// n in different base1s from 2 to n-1.
using System;
  
class GFG
{
// function to calculate sum of 
// digit for a given base1
static int solve(int n, int base1)
{
    // Sum of digits
    int result = 0 ;
      
    // Calculating the number (n) by
    // taking mod with the base1 and adding 
    // remainder to the result and 
    // parallelly reducing the num value .
    while (n > 0)
    {
        int remainder = n % base1 ;
        result = result + remainder ; 
        n = n / base1;
    }
      
    // returning the result 
    return result ;
}
  
static void printSumsOfDigits(int n)
{
    // function calling for multiple base1s
    for (int base1 = 2 ; base1 < n ; ++base1) 
        Console.Write(solve(n, base1)+" "); 
}
  
// Driver Code
public static void Main()
{
    int n = 8;
    printSumsOfDigits(n);
}
}
// This code is contributed by Smitha 

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP program to find sum of digits of
// n in different bases from 2 to n-1.
  
// function to calculate sum of 
// digit for a given base
function solve($n, $base)
{
      
    // Sum of digits
    $result = 0 ;
      
    // Calculating the number (n) by
    // taking mod with the base and adding 
    // remainder to the result and 
    // parallelly reducing the num value .
    while ($n > 0)
    {
        $remainder = $n % $base ;
        $result = $result + $remainder
        $n = $n / $base;
    }
      
    // returning the result 
    return $result ;
}
  
function printSumsOfDigits($n)
{
      
    // function calling for 
    // multiple bases
    for ($base = 2 ; $base < $n ; ++$base)
    {
        echo(solve($n, $base));
        echo(" ");
    }
}
  
// Driver code
$n = 8;
printSumsOfDigits($n);
  
// This code is contributed by Ajit.
?>

chevron_right



Output :

1 4 2 4 3 2 


My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.