Given two arrays arr1[] of size M and arr2[] of size N, the task is to find the sum of bitwise OR of each element of arr1[] with every element of the array arr2[].
Examples:
Input: arr1[] = {1, 2, 3}, arr2[] = {1, 2, 3}, M = 3, N = 3
Output: 7 8 9
Explanation:
For arr[0]: Sum = arr1[0]|arr2[0] + arr1[0]|arr2[1] + arr1[0]|arr2[2], Sum = 1|1 + 1|2 + 1|3 = 7
For arr[1], Sum = arr1[1]|arr2[0] + arr1[1]|arr2[1] + arr1[1]|arr2[2], Sum= 2|1 + 2|2 + 2|3 = 8
For arr[2], Sum = arr1[2]|arr2[0] + arr1[2]|arr2[1] + arr1[2]|arr2[2], Sum = 3|1 + 3|2 + 3|3 = 9
Input: arr1[] = {2, 4, 8, 16}, arr2[] = {2, 4, 8, 16}, M = 4, N = 4
Output: 36 42 54 78
Naive Approach: The simplest0 approach to solve this problem to traverse the array arr1[] and for each array element in the array arr[], calculate Bitwise OR of each element in the array arr2[].
Time Complexity: O(N2)
Auxiliary Space: O(N)
Efficient Approach: To optimize the above approach, the idea is to use Bit Manipulation to solve the above problem.
- According to the Bitwise OR property, while performing the operation, the ith bit will be set bit only when either of both numbers has a set bit at the ith position, where 0 ≤ i <32.
- Therefore, for a number in arr1[], if the ith bit is not a set bit, then the ith place will contribute a sum of K * 2i , where K is the total number in arr2[] having set bit at the ith position.
- Otherwise, if the number has a set bit at the ith place, then it will contribute a sum of N * 2i.
Follow the steps below to solve the problem:
- Initialize an integer array, say frequency[], to store the count of numbers in arr2[] having set-bit at ith position ( 0 ≤ i < 32).
- Traverse the array arr2[] and represent each array element in its binary form and increment the count in the frequency[] array by one at the positions having set bit in the binary representations.
- Traverse the array arr1[].
- Initialize an integer variable, say bitwise_OR_sum with 0.
- Traverse in the range [0, 31] using variable j.
- If the jth bit is set in the binary representation of arr2[i], then increment bitwise_OR_sum by N * 2j. Otherwise, increment by frequency[j] * 2j
- Print the sum obtained bitwise_OR_sum.
Below is the implementation of the above approach:
C++
#include <bits/stdc++.h>
using namespace std;
void Bitwise_OR_sum_i( int arr1[], int arr2[],
int M, int N)
{
int frequency[32] = { 0 };
for ( int i = 0; i < N; i++) {
int bit_position = 0;
int num = arr1[i];
while (num) {
if (num & 1) {
frequency[bit_position] += 1;
}
bit_position += 1;
num >>= 1;
}
}
for ( int i = 0; i < M; i++) {
int num = arr2[i];
int value_at_that_bit = 1;
int bitwise_OR_sum = 0;
for ( int bit_position = 0;
bit_position < 32;
bit_position++) {
if (num & 1) {
bitwise_OR_sum
+= N * value_at_that_bit;
}
else {
bitwise_OR_sum
+= frequency[bit_position]
* value_at_that_bit;
}
num >>= 1;
value_at_that_bit <<= 1;
}
cout << bitwise_OR_sum << ' ' ;
}
return ;
}
int main()
{
int arr1[] = { 1, 2, 3 };
int arr2[] = { 1, 2, 3 };
int N = sizeof (arr1) / sizeof (arr1[0]);
int M = sizeof (arr2) / sizeof (arr2[0]);
Bitwise_OR_sum_i(arr1, arr2, M, N);
return 0;
}
|
Java
import java.util.*;
class GFG{
static void Bitwise_OR_sum_i( int arr1[], int arr2[],
int M, int N)
{
int frequency[] = new int [ 32 ];
Arrays.fill(frequency, 0 );
for ( int i = 0 ; i < N; i++)
{
int bit_position = 0 ;
int num = arr1[i];
while (num != 0 )
{
if ((num & 1 ) != 0 )
{
frequency[bit_position] += 1 ;
}
bit_position += 1 ;
num >>= 1 ;
}
}
for ( int i = 0 ; i < M; i++)
{
int num = arr2[i];
int value_at_that_bit = 1 ;
int bitwise_OR_sum = 0 ;
for ( int bit_position = 0 ;
bit_position < 32 ;
bit_position++)
{
if ((num & 1 ) != 0 )
{
bitwise_OR_sum += N * value_at_that_bit;
}
else
{
bitwise_OR_sum += frequency[bit_position] *
value_at_that_bit;
}
num >>= 1 ;
value_at_that_bit <<= 1 ;
}
System.out.print(bitwise_OR_sum + " " );
}
return ;
}
public static void main(String[] args)
{
int arr1[] = { 1 , 2 , 3 };
int arr2[] = { 1 , 2 , 3 };
int N = arr1.length;
int M = arr2.length;
Bitwise_OR_sum_i(arr1, arr2, M, N);
}
}
|
Python3
def Bitwise_OR_sum_i(arr1, arr2, M, N):
frequency = [ 0 ] * 32
for i in range (N):
bit_position = 0
num = arr1[i]
while (num):
if (num & 1 ! = 0 ):
frequency[bit_position] + = 1
bit_position + = 1
num >> = 1
for i in range (M):
num = arr2[i]
value_at_that_bit = 1
bitwise_OR_sum = 0
for bit_position in range ( 32 ):
if (num & 1 ! = 0 ):
bitwise_OR_sum + = N * value_at_that_bit
else :
bitwise_OR_sum + = (frequency[bit_position] *
value_at_that_bit)
num >> = 1
value_at_that_bit << = 1
print (bitwise_OR_sum, end = " " )
return
arr1 = [ 1 , 2 , 3 ]
arr2 = [ 1 , 2 , 3 ]
N = len (arr1)
M = len (arr2)
Bitwise_OR_sum_i(arr1, arr2, M, N)
|
C#
using System;
class GFG
{
static void Bitwise_OR_sum_i( int [] arr1, int [] arr2,
int M, int N)
{
int [] frequency = new int [32];
for ( int i = 0; i < 32; i++)
{
frequency[i] = 0;
}
for ( int i = 0; i < N; i++)
{
int bit_position = 0;
int num = arr1[i];
while (num != 0)
{
if ((num & 1) != 0)
{
frequency[bit_position] += 1;
}
bit_position += 1;
num >>= 1;
}
}
for ( int i = 0; i < M; i++)
{
int num = arr2[i];
int value_at_that_bit = 1;
int bitwise_OR_sum = 0;
for ( int bit_position = 0;
bit_position < 32;
bit_position++)
{
if ((num & 1) != 0)
{
bitwise_OR_sum += N * value_at_that_bit;
}
else
{
bitwise_OR_sum += frequency[bit_position] *
value_at_that_bit;
}
num >>= 1;
value_at_that_bit <<= 1;
}
Console.Write(bitwise_OR_sum + " " );
}
return ;
}
public static void Main()
{
int [] arr1 = { 1, 2, 3 };
int [] arr2 = { 1, 2, 3 };
int N = arr1.Length;
int M = arr2.Length;
Bitwise_OR_sum_i(arr1, arr2, M, N);
}
}
|
Javascript
<script>
function Bitwise_OR_sum_i(arr1, arr2, M, N) {
let frequency = new Array(32).fill(0);
for (let i = 0; i < N; i++) {
let bit_position = 0;
let num = arr1[i];
while (num) {
if (num & 1) {
frequency[bit_position] += 1;
}
bit_position += 1;
num >>= 1;
}
}
for (let i = 0; i < M; i++) {
let num = arr2[i];
let value_at_that_bit = 1;
let bitwise_OR_sum = 0;
for (let bit_position = 0; bit_position < 32; bit_position++) {
if (num & 1) {
bitwise_OR_sum += N * value_at_that_bit;
}
else {
bitwise_OR_sum += frequency[bit_position] * value_at_that_bit;
}
num >>= 1;
value_at_that_bit <<= 1;
}
document.write(bitwise_OR_sum + ' ' );
}
return ;
}
let arr1 = [1, 2, 3];
let arr2 = [1, 2, 3];
let N = arr1.length;
let M = arr2.length;
Bitwise_OR_sum_i(arr1, arr2, M, N);
</script>
|
Time Complexity: O(N*32)
Auxiliary Space: O(1) because size of frequency array is constant
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!
Last Updated :
11 Oct, 2022
Like Article
Save Article