Given an array arr[] of size n, we need to find sum of all the values that comes from ORing all the elements of the subsets.
Prerequisites : Subset Sum of given set
Examples :
Input : arr[] = {1, 2, 3}
Output : 18
Total Subsets = 23 -1= 7
1 = 1
2 = 2
3 = 3
1 | 2 = 3
1 | 3 = 3
2 | 3 = 3
1 | 2 | 3 = 3
0(empty subset)
Now SUM of all these ORs = 1 + 2 + 3 + 3 +
3 + 3 + 3
= 18
Input : arr[] = {1, 2, 3}
Output : 18
A Naive approach is to take the OR all possible combination of array[] elements and then perform the summation of all values. Time complexity of this approach grows exponentially so it would not be better for large value of n.
An Efficient approach is to find the pattern with respect to the property of OR. Now again consider the subset in binary form like:
1 = 001
2 = 010
3 = 011
1 | 2 = 011
1 | 3 = 011
2 | 3 = 011
1|2|3 = 011
Instead of taking the OR of all possible elements of array, Here we will consider all possible subset with ith bit 1.
Now, consider the ith bit in all the resultant ORs, it is zero only if all the ith bit of elements in the subset is 0.
Number of subset with ith bit 1 = total possible subsets – subsets with all ith bit 0. Here, total subsets = 2^n – 1 and subsets with all ith bits 0 = 2^( count of zeros at ith bit of all the elements of array) – 1. Now, Total subset OR with ith bit 1 = (2^n-1)-(2^(count of zeros at ith bit)-1). Total value contributed by those bits with value 1 = total subset OR with ith bit 1 *(2^i).
Now, total sum = (total subset with ith bit 1) * 2^i + (total subset with i+1th bit 1) * 2^(i+1) + ……… + (total subset with 32 bit 1) * 2^32.
Implementation:
C++
#include <bits/stdc++.h>
using namespace std;
#define INT_SIZE 32
int ORsum( int arr[], int n)
{
int zerocnt[INT_SIZE] = { 0 };
for ( int i = 0; i < INT_SIZE; i++)
for ( int j = 0; j < n; j++)
if (!(arr[j] & 1 << i))
zerocnt[i] += 1;
int ans = 0;
for ( int i = 0; i < INT_SIZE; i++)
{
ans += (( pow (2, n) - 1) -
( pow (2, zerocnt[i]) - 1)) *
pow (2, i);
}
return ans;
}
int main()
{
int arr[] = { 1, 2, 3 };
int size = sizeof (arr) / sizeof (arr[0]);
cout << ORsum(arr, size);
return 0;
}
|
Java
import java.io.*;
class GFG {
static int INT_SIZE = 32 ;
static int ORsum( int []arr, int n)
{
int zerocnt[] = new int [INT_SIZE] ;
for ( int i = 0 ; i < INT_SIZE; i++)
for ( int j = 0 ; j < n; j++)
if ((arr[j] & 1 << i) == 0 )
zerocnt[i] += 1 ;
int ans = 0 ;
for ( int i = 0 ; i < INT_SIZE; i++)
{
ans += ((Math.pow( 2 , n) - 1 ) -
(Math.pow( 2 , zerocnt[i]) - 1 )) *
Math.pow( 2 , i);
}
return ans;
}
public static void main(String[] args)
{
int arr[] = { 1 , 2 , 3 };
int size = arr.length;
System.out.println(ORsum(arr, size));
}
}
|
Python3
INT_SIZE = 32
def ORsum(arr, n):
zerocnt = [ 0 for i in range (INT_SIZE)]
for i in range (INT_SIZE):
for j in range (n):
if not (arr[j] & ( 1 << i)):
zerocnt[i] + = 1
ans = 0
for i in range (INT_SIZE):
ans + = (( 2 * * n - 1 ) - ( 2 * * zerocnt[i] - 1 )) * 2 * * i
return ans
if __name__ = = "__main__" :
arr = [ 1 , 2 , 3 ]
size = len (arr)
print (ORsum(arr, size))
|
C#
using System;
class GFG {
static int INT_SIZE = 32;
static int ORsum( int []arr, int n)
{
int []zerocnt = new int [INT_SIZE] ;
for ( int i = 0; i < INT_SIZE; i++)
for ( int j = 0; j < n; j++)
if ((arr[j] & 1 << i) == 0)
zerocnt[i] += 1;
int ans = 0;
for ( int i = 0; i < INT_SIZE; i++)
{
ans += ( int )(((Math.Pow(2, n) - 1) -
(Math.Pow(2, zerocnt[i]) - 1)) *
Math.Pow(2, i));
}
return ans;
}
public static void Main()
{
int []arr = {1, 2, 3};
int size = arr.Length;
Console.Write(ORsum(arr, size));
}
}
|
PHP
<?php
$INT_SIZE = 32;
function ORsum(& $arr , $n )
{
global $INT_SIZE ;
$zerocnt = array_fill (0, $INT_SIZE , NULL);
for ( $i = 0; $i < $INT_SIZE ; $i ++)
for ( $j = 0; $j < $n ; $j ++)
if (!( $arr [ $j ] & 1 << $i ))
$zerocnt [ $i ] += 1;
$ans = 0;
for ( $i = 0; $i < $INT_SIZE ; $i ++)
{
$ans += ((pow(2, $n ) - 1) -
(pow(2, $zerocnt [ $i ]) - 1)) *
pow(2, $i );
}
return $ans ;
}
$arr = array (1, 2, 3);
$size = sizeof( $arr );
echo ORsum( $arr , $size );
?>
|
Javascript
<script>
let INT_SIZE = 32;
function ORsum(arr, n)
{
let zerocnt = new Uint8Array(INT_SIZE);
for (let i = 0; i < INT_SIZE; i++)
for (let j = 0; j < n; j++)
if (!(arr[j] & 1 << i))
zerocnt[i] += 1;
let ans = 0;
for (let i = 0; i < INT_SIZE; i++)
{
ans += ((Math.pow(2, n) - 1) -
(Math.pow(2, zerocnt[i]) - 1)) *
Math.pow(2, i);
}
return ans;
}
let arr = [ 1, 2, 3 ];
let size = arr.length;
document.write(ORsum(arr, size));
</script>
|
Complexity Analysis:
- Time complexity: O(n)
- Auxiliary space: O(n)
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!
Last Updated :
17 Aug, 2022
Like Article
Save Article