Skip to content
Related Articles

Related Articles

Improve Article

Sum of Bitwise AND of all unordered triplets of an array

  • Last Updated : 15 Jul, 2021

Given an array arr[] consisting of N positive integers, the task is to find the sum of Bitwise AND of all possible triplets (arr[i], arr[j], arr[k]) such that i < j < k.

Examples:

Input: arr[] = {3, 5, 4, 7}
Output: 5
Explanation: Sum of Bitwise AND of all possible triplets = (3 & 5 & 4) + (3 & 5 & 7) + (3 & 4 & 7) + (5 & 4 & 7) = 0 + 1 + 0 + 4 = 5.

Input: arr[] = {4, 4, 4}
Output: 4

Naive Approach: The simplest approach to solve the given problem is to generate all possible triplets (i, j, k) of the given array such that i < j < k  and print the sum of Bitwise AND of all possible triplets.



Below is the implementation of the above approach:

C++




// C++ program for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to calculate sum of Bitwise
// AND of all unordered triplets from
// a given array such that (i < j < k)
void tripletAndSum(int arr[], int n)
{
    // Stores the resultant sum of
    // Bitwise AND of all triplets
    int ans = 0;
 
    // Generate all triplets of
    // (arr[i], arr[j], arr[k])
    for (int i = 0; i < n; i++) {
        for (int j = i + 1; j < n; j++) {
            for (int k = j + 1; k < n; k++) {
 
                // Add Bitwise AND to ans
                ans += arr[i] & arr[j] & arr[k];
            }
        }
    }
 
    // Print the result
    cout << ans;
}
 
// Driver Code
int main()
{
    int arr[] = { 3, 5, 4, 7 };
    int N = sizeof(arr) / sizeof(arr[0]);
    tripletAndSum(arr, N);
//This code is contributed by Potta Lokesh
    return 0;
}

Java




// Java program for the above approach
import java.io.*;
 
class GFG
{
   
    // Function to calculate sum of Bitwise
    // AND of all unordered triplets from
    // a given array such that (i < j < k)
    public static void tripletAndSum(int arr[], int n)
    {
       
        // Stores the resultant sum of
        // Bitwise AND of all triplets
        int ans = 0;
 
        // Generate all triplets of
        // (arr[i], arr[j], arr[k])
        for (int i = 0; i < n; i++) {
            for (int j = i + 1; j < n; j++) {
                for (int k = j + 1; k < n; k++) {
 
                    // Add Bitwise AND to ans
                    ans += arr[i] & arr[j] & arr[k];
                }
            }
        }
 
        // Print the result
        System.out.println(ans);
    }
 
    public static void main(String[] args)
    {
        int arr[] = { 3, 5, 4, 7 };
        int N = arr.length;
        tripletAndSum(arr, N);
    }
}
 
 //This code is contributed by Potta Lokesh

Python3




# Python3 program for the above approach
 
# Function to calculate sum of Bitwise
# AND of all unordered triplets from
# a given array such that (i < j < k)
def tripletAndSum(arr, n):
     
    # Stores the resultant sum of
    # Bitwise AND of all triplets
    ans = 0
 
    # Generate all triplets of
    # (arr[i], arr[j], arr[k])
    for i in range(n):
        for j in range(i + 1, n, 1):
            for k in range(j + 1, n, 1):
                 
                # Add Bitwise AND to ans
                ans += arr[i] & arr[j] & arr[k]
 
    # Print the result
    print(ans)
 
# Driver Code
if __name__ == '__main__':
     
    arr = [ 3, 5, 4, 7 ]
    N = len(arr)
     
    tripletAndSum(arr, N)
 
# This code is contributed by bgangwar59

C#




// C# program for the above approach
using System;
 
class GFG{
     
    // Function to calculate sum of Bitwise
    // AND of all unordered triplets from
    // a given array such that (i < j < k)
    public static void tripletAndSum(int[] arr, int n)
    {
       
        // Stores the resultant sum of
        // Bitwise AND of all triplets
        int ans = 0;
 
        // Generate all triplets of
        // (arr[i], arr[j], arr[k])
        for (int i = 0; i < n; i++) {
            for (int j = i + 1; j < n; j++) {
                for (int k = j + 1; k < n; k++) {
 
                    // Add Bitwise AND to ans
                    ans += arr[i] & arr[j] & arr[k];
                }
            }
        }
 
        // Print the result
        Console.WriteLine(ans);
    }
 
 
// Driver code
static public void Main()
{
    int[] arr = { 3, 5, 4, 7 };
        int N = arr.Length;
        tripletAndSum(arr, N);
}
}
 
// This code is contributed by splevel62.

Javascript




<script>
        // JavaScript program for the above approach
 
 
        // Function to calculate sum of Bitwise
        // AND of all unordered triplets from
        // a given array such that (i < j < k)
        function tripletAndSum(arr, n) {
            // Stores the resultant sum of
            // Bitwise AND of all triplets
            let ans = 0;
 
            // Generate all triplets of
            // (arr[i], arr[j], arr[k])
            for (let i = 0; i < n; i++) {
                for (let j = i + 1; j < n; j++) {
                    for (let k = j + 1; k < n; k++) {
 
                        // Add Bitwise AND to ans
                        ans += arr[i] & arr[j] & arr[k];
                    }
                }
            }
 
            // Print the result
            document.write(ans);
        }
 
        // Driver Code
 
        let arr = [3, 5, 4, 7];
        let N = arr.length
        tripletAndSum(arr, N);
         
        // This code is contributed by Potta Lokesh
  </script>
Output: 
5

 

Time Complexity: O(N3)
Auxiliary Space: O(1)

Efficient Approach: The above approach can also be optimized by taking into account the binary representation of the numbers. Follow the steps below to solve the problem:

Below is the implementation of the above approach:

C++




// C++ program for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to calculate sum of Bitwise
// AND of all unordered triplets from
// a given array such that (i < j < k)
int tripletAndSum(int arr[], int n)
{
    // Stores the resultant sum of
    // Bitwise AND of all triplets
    int ans = 0;
 
    // Traverse over all the bits
    for (int bit = 0; bit < 32; bit++) {
        int cnt = 0;
 
        // Count number of elements
        // with the current bit set
        for (int i = 0; i < n; i++) {
            if (arr[i] & (1 << bit))
                cnt++;
        }
 
        // There are (cnt)C(3) numbers
        // with the current bit set and
        // each triplet contributes
        // 2^bit to the result
        ans += (1 << bit) * cnt
               * (cnt - 1) * (cnt - 2) / 6;
    }
 
    // Return the resultant sum
    return ans;
}
 
// Driver Code
int main()
{
    int arr[] = { 3, 5, 4, 7 };
    int N = sizeof(arr) / sizeof(arr[0]);
    cout << tripletAndSum(arr, N);
 
    return 0;
}

Java




// Java program for the above approach
import java.util.*;
 
class GFG{
 
// Function to calculate sum of Bitwise
// AND of all unordered triplets from
// a given array such that (i < j < k)
static int tripletAndSum(int[] arr, int n)
{
     
    // Stores the resultant sum of
    // Bitwise AND of all triplets
    int ans = 0;
 
    // Traverse over all the bits
    for(int bit = 0; bit < 32; bit++)
    {
        int cnt = 0;
 
        // Count number of elements
        // with the current bit set
        for(int i = 0; i < n; i++)
        {
            if ((arr[i] & (1 << bit)) != 0)
                cnt++;
        }
 
        // There are (cnt)C(3) numbers
        // with the current bit set and
        // each triplet contributes
        // 2^bit to the result
        ans += (1 << bit) * cnt *
               (cnt - 1) * (cnt - 2) / 6;
    }
 
    // Return the resultant sum
    return ans;
}
 
// Driver Code
public static void main(String[] args)
{
    int arr[] = { 3, 5, 4, 7 };
    int N = arr.length;
     
    System.out.print(tripletAndSum(arr, N));
}
}
 
// This code is contributed by subham348

Python3




# Python program for the above approach
# Function to calculate sum of Bitwise
# AND of all unordered triplets from
# a given array such that (i < j < k)
def tripletAndSum(arr, n):
     
    # Stores the resultant sum of
    # Bitwise AND of all triplets
    ans = 0
     
    # Traverse over all the bits
    for bit in range(32):
        cnt = 0
         
        # Count number of elements
        # with the current bit set
        for i in range(n):
            if(arr[i] & (1 << bit)):
                cnt+=1
                 
        # There are (cnt)C(3) numbers
        # with the current bit set and
        # each triplet contributes
        # 2^bit to the result
        ans += (1 << bit) * cnt * (cnt - 1) * (cnt - 2) // 6
     
    # Return the resultant sum
    return ans
 
# Driver Code
arr =  [3, 5, 4, 7]
N = len(arr)
print(tripletAndSum(arr, N))
 
# this code is contributed by shivanisinghss2110

C#




// C# program for the above approach
using System;
 
class GFG{
 
// Function to calculate sum of Bitwise
// AND of all unordered triplets from
// a given array such that (i < j < k)
static int tripletAndSum(int[] arr, int n)
{
     
    // Stores the resultant sum of
    // Bitwise AND of all triplets
    int ans = 0;
 
    // Traverse over all the bits
    for(int bit = 0; bit < 32; bit++)
    {
        int cnt = 0;
 
        // Count number of elements
        // with the current bit set
        for(int i = 0; i < n; i++)
        {
            if ((arr[i] & (1 << bit)) != 0)
                cnt++;
        }
 
        // There are (cnt)C(3) numbers
        // with the current bit set and
        // each triplet contributes
        // 2^bit to the result
        ans += (1 << bit) * cnt * (cnt - 1) *
                                  (cnt - 2) / 6;
    }
 
    // Return the resultant sum
    return ans;
}
 
// Driver Code
public static void Main()
{
    int[] arr = { 3, 5, 4, 7 };
    int N = arr.Length;
 
    Console.Write(tripletAndSum(arr, N));
}
}
 
// This code is contributed by rishavmahato348

Javascript




<script>
 
// Javascript program for the above approach
 
 
 
// Function to calculate sum of Bitwise
// AND of all unordered triplets from
// a given array such that (i < j < k)
function tripletAndSum(arr, n) {
    // Stores the resultant sum of
    // Bitwise AND of all triplets
    let ans = 0;
 
    // Traverse over all the bits
    for (let bit = 0; bit < 32; bit++) {
        let cnt = 0;
 
        // Count number of elements
        // with the current bit set
        for (let i = 0; i < n; i++) {
            if (arr[i] & (1 << bit))
                cnt++;
        }
 
        // There are (cnt)C(3) numbers
        // with the current bit set and
        // each triplet contributes
        // 2^bit to the result
        ans += (1 << bit) * cnt
            * (cnt - 1) * (cnt - 2) / 6;
    }
 
    // Return the resultant sum
    return ans;
}
 
// Driver Code
 
let arr = [3, 5, 4, 7];
let N = arr.length;
document.write(tripletAndSum(arr, N));
 
// This code is contributed by _saurabh_jaiswal.
</script>
Output: 
5

 

Time Complexity: O(N)
Auxiliary Space: O(1)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.




My Personal Notes arrow_drop_up
Recommended Articles
Page :