Skip to content
Related Articles

Related Articles

Improve Article
Sum of bitwise AND of all subarrays
  • Difficulty Level : Medium
  • Last Updated : 12 May, 2021

Given an array consisting of N positive integers, find the sum of bit-wise and of all possible sub-arrays of the array.

Examples:  

Input : arr[] = {1, 5, 8}
Output : 15
Bit-wise AND of {1} = 1
Bit-wise AND of {1, 5} = 1
Bit-wise AND of {1, 5, 8} = 0 
Bit-wise AND of {5} = 5
Bit-wise AND of {5, 8} = 0
Bit-wise AND of {8} = 8

Sum = 1 + 1 + 0 + 5 + 0 + 8 =  15

Input : arr[] =  {7, 1, 1, 5}
Output : 20 

Simple Solution: A simple solution will be to generate all the sub-arrays, and sum up the AND values of all the sub-arrays. It will take linear time on average to find the AND value of a sub-array and thus, the overall time complexity will be O(n3).

Efficient Solution: For the sake of better understanding, let’s assume that any bit of an element is represented by the variable ‘i’, and the variable ‘sum’ is used to store the final sum.
The idea here is, we will try to find the number of AND values(sub-arrays with bit-wise and(&)) with ith bit set. Let us suppose, there is ‘Si‘ number of sub-arrays with ith bit set. For, ith bit, the sum can be updated as sum += (2i * S).
We will break the task into multiple steps. At each step, we will try to find the number of AND values with ith bit set. For this, we will simply iterate through the array and find the number of contiguous segments with ith bit set and their lengths. For, each such segment of length ‘l’, value of sum can be updated as sum += (2i * l * (l + 1))/2.
Since, for each bit, we are performing O(N) iterations and as there are at most log(max(A)) bits, the time complexity of this approach will be O(N*log(max(A)), assuming max(A) = maximum value in the array.

Below is the implementation of the above idea: 



C++




// CPP program to find sum of bitwise AND
// of all subarrays
 
#include <iostream>
#include <vector>
using namespace std;
 
// Function to find the sum of
// bitwise AND of all subarrays
int findAndSum(int arr[], int n)
{
    // variable to store
    // the final sum
    int sum = 0;
 
    // multiplier
    int mul = 1;
 
    for (int i = 0; i < 30; i++) {
        // variable to check if
        // counting is on
        bool count_on = 0;
 
        // variable to store the
        // length of the subarrays
        int l = 0;
 
        // loop to find the contiguous
        // segments
        for (int j = 0; j < n; j++) {
            if ((arr[j] & (1 << i)) > 0)
                if (count_on)
                    l++;
                else {
                    count_on = 1;
                    l++;
                }
 
            else if (count_on) {
                sum += ((mul * l * (l + 1)) / 2);
                count_on = 0;
                l = 0;
            }
        }
 
        if (count_on) {
            sum += ((mul * l * (l + 1)) / 2);
            count_on = 0;
            l = 0;
        }
 
        // updating the multiplier
        mul *= 2;
    }
 
    // returning the sum
    return sum;
}
 
// Driver Code
int main()
{
 
    int arr[] = { 7, 1, 1, 5 };
 
    int n = sizeof(arr) / sizeof(arr[0]);
 
    cout << findAndSum(arr, n);
 
    return 0;
}

Java




// Java program to find sum of bitwise AND
// of all subarrays
class GFG
{
     
// Function to find the sum of
// bitwise AND of all subarrays
static int findAndSum(int []arr, int n)
{
    // variable to store
    // the final sum
    int sum = 0;
 
    // multiplier
    int mul = 1;
 
    for (int i = 0; i < 30; i++)
    {
        // variable to check if
        // counting is on
        boolean count_on = false;
 
        // variable to store the
        // length of the subarrays
        int l = 0;
 
        // loop to find the contiguous
        // segments
        for (int j = 0; j < n; j++)
        {
            if ((arr[j] & (1 << i)) > 0)
                if (count_on)
                    l++;
                else
                {
                    count_on = true;
                    l++;
                }
 
            else if (count_on)
            {
                sum += ((mul * l * (l + 1)) / 2);
                count_on = false;
                l = 0;
            }
        }
 
        if (count_on)
        {
            sum += ((mul * l * (l + 1)) / 2);
            count_on = false;
            l = 0;
        }
 
        // updating the multiplier
        mul *= 2;
    }
 
    // returning the sum
    return sum;
}
 
// Driver Code
public static void main(String[] args)
{
    int []arr = { 7, 1, 1, 5 };
    int n = arr.length;
 
    System.out.println(findAndSum(arr, n));
}
}
 
// This code is contributed
// by Code_Mech.

Python3




# Python3 program to find Sum of
# bitwise AND of all subarrays
import math as mt
 
# Function to find the Sum of
# bitwise AND of all subarrays
def findAndSum(arr, n):
     
    # variable to store the final Sum
    Sum = 0
 
    # multiplier
    mul = 1
 
    for i in range(30):
         
        # variable to check if counting is on
        count_on = 0
 
        # variable to store the length
        # of the subarrays
        l = 0
 
        # loop to find the contiguous
        # segments
        for j in range(n):
 
            if ((arr[j] & (1 << i)) > 0):
                if (count_on):
                    l += 1
                else:
                    count_on = 1
                    l += 1
 
            elif (count_on):
                Sum += ((mul * l * (l + 1)) // 2)
                count_on = 0
                l = 0
             
        if (count_on):
            Sum += ((mul * l * (l + 1)) // 2)
            count_on = 0
            l = 0
         
        # updating the multiplier
        mul *= 2
     
    # returning the Sum
    return Sum
 
# Driver Code
arr = [7, 1, 1, 5]
 
n = len(arr)
 
print(findAndSum(arr, n))
 
# This code is contributed by Mohit Kumar

C#




// C# program to find sum of bitwise AND
// of all subarrays
using System;
 
class GFG
{
 
// Function to find the sum of
// bitwise AND of all subarrays
static int findAndSum(int []arr, int n)
{
    // variable to store
    // the final sum
    int sum = 0;
 
    // multiplier
    int mul = 1;
 
    for (int i = 0; i < 30; i++)
    {
        // variable to check if
        // counting is on
        bool count_on = false;
 
        // variable to store the
        // length of the subarrays
        int l = 0;
 
        // loop to find the contiguous
        // segments
        for (int j = 0; j < n; j++)
        {
            if ((arr[j] & (1 << i)) > 0)
                if (count_on)
                    l++;
                else
                {
                    count_on = true;
                    l++;
                }
 
            else if (count_on)
            {
                sum += ((mul * l * (l + 1)) / 2);
                count_on = false;
                l = 0;
            }
        }
 
        if (count_on)
        {
            sum += ((mul * l * (l + 1)) / 2);
            count_on = false;
            l = 0;
        }
 
        // updating the multiplier
        mul *= 2;
    }
 
    // returning the sum
    return sum;
}
 
// Driver Code
public static void Main()
{
    int []arr = { 7, 1, 1, 5 };
    int n = arr.Length;
 
    Console.Write(findAndSum(arr, n));
}
}
 
// This code is contributed
// by Akanksha Rai

PHP




<?php
// PHP program to find sum of bitwise
// AND of all subarrays
 
// Function to find the sum of
// bitwise AND of all subarrays
function findAndSum($arr, $n)
{
    // variable to store the
    // final sum
    $sum = 0;
 
    // multiplier
    $mul = 1;
 
    for ($i = 0; $i < 30; $i++)
    {
         
        // variable to check if
        // counting is on
        $count_on = 0;
 
        // variable to store the
        // length of the subarrays
        $l = 0;
 
        // loop to find the contiguous
        // segments
        for ($j = 0; $j < $n; $j++)
        {
            if (($arr[$j] & (1 << $i)) > 0)
                if ($count_on)
                    $l++;
                else
                {
                    $count_on = 1;
                    $l++;
                }
 
            else if ($count_on)
            {
                $sum += (($mul * $l * ($l + 1)) / 2);
                $count_on = 0;
                $l = 0;
            }
        }
 
        if ($count_on)
        {
            $sum += (($mul * $l * ($l + 1)) / 2);
            $count_on = 0;
            $l = 0;
        }
 
        // updating the multiplier
        $mul *= 2;
    }
 
    // returning the sum
    return $sum;
}
 
// Driver Code
$arr = array( 7, 1, 1, 5 );
 
$n = sizeof($arr);
 
echo findAndSum($arr, $n);
 
// This code is contributed by Ryuga
?>

Javascript




<script>
 
// Javascript program to find sum of bitwise AND
// of all subarrays
 
// Function to find the sum of
// bitwise AND of all subarrays
function findAndSum(arr, n)
{
    // variable to store
    // the final sum
    var sum = 0;
 
    // multiplier
    var mul = 1;
 
    for (var i = 0; i < 30; i++) {
        // variable to check if
        // counting is on
        var count_on = 0;
 
        // variable to store the
        // length of the subarrays
        var l = 0;
 
        // loop to find the contiguous
        // segments
        for (var j = 0; j < n; j++) {
            if ((arr[j] & (1 << i)) > 0)
                if (count_on)
                    l++;
                else {
                    count_on = 1;
                    l++;
                }
 
            else if (count_on) {
                sum += ((mul * l * (l + 1)) / 2);
                count_on = 0;
                l = 0;
            }
        }
 
        if (count_on) {
            sum += ((mul * l * (l + 1)) / 2);
            count_on = 0;
            l = 0;
        }
 
        // updating the multiplier
        mul *= 2;
    }
 
    // returning the sum
    return sum;
}
 
// Driver Code
var arr = [ 7, 1, 1, 5 ];
var n = arr.length;
document.write( findAndSum(arr, n));
 
</script>
Output: 
20

 

Time Complexity: O(N*log(max(A))
 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with industry experts, please refer Geeks Classes Live




My Personal Notes arrow_drop_up
Recommended Articles
Page :